
Cover Art By: Arthur Dugoni

ON THE COVER
6 Delphi at Work
Embedded Forms — John Simonini
Mr Simonini shares a technique for embedding forms as the pages of a
tabbed notebook — a technique that facilitates discrete business logic,
team development, memory management, and code reuse.

FEATURES
10 Distributed Delphi
Request Threads — Michael J. Leaver
Mr Leaver describes a resource-sharing methodology for Delphi 4/5
Client/Server Suite using DCOM, and without using Transaction
Processing Monitors, such as MTS or BEA’s Tuxedo.

14 Sound + Vision
A Multimedia Assembly Line: Part II — Alan C. Moore, Ph.D.
Dr Moore wraps up his two-part description of how to create a Delphi
sound expert that builds sound-enabled components, including a
detailed look at the code-generating engine.

18 In Development
Control Panel Applets — Peter J. Rosario
Control Panel applets are the small programs that are visible in, and
run from, Windows Control Panel. Mr Rosario describes why you’d write
one, and demonstrates how to do it with Delphi.

22 Dynamic Delphi
Run-time ActiveX — Ron Loewy
Sure, it’s easy to incorporate an ActiveX component with your Delphi
application at design time, but Mr Loewy takes it one big step further by
allowing run-time integration.

REVIEWS
29 Orpheus 3

Product Review by Alan C. Moore Ph.D.

DEPARTMENTS
2 Delphi Tools
5 Delphi News
33 File | New by Alan C. Moore, Ph.D.

January 2000, Volume 6, Number 1

1 January 2000 Delphi Informant Magazine

2 January 2000 Delphi Informant Magazi

Delphi
T O O L S

New Products
and Solutions

Excel Software Announces QuickCRC 1.2

Excel Software announced

QuickCRC 1.2 for object-ori-
ented software modeling on
Windows or Macintosh com-
puters. Version 1.2 increases the
model capacity to support thou-
sands of object classes, hundreds
of diagrams, and long names for
classes, attributes, and opera-
tions. QuickCRC 1.2 supports
the Delphi, C++, and Java re-
engineering features available in
WinTranslator 2.0, which gen-
erates class models or CRC
cards from source code.

QuickCRC uses a diagram
workspace for creating card
and scenario objects. A card
represents the properties of a
class, including its name,
description, superclasses, sub-
classes, attributes, responsibili-
ties, and object collaborations.
A scenario represents a design
mechanism defined as a series
of steps involving communi-
cating objects. Scenarios can
reference cards and other sce-
narios. As information is
entered or changed for a card
or scenario object, it is instant-
ly synchronized throughout
ne

Vista Software Releases Ap
the model. Separate diagrams
partition large models into
subject areas. The contents
view allows a designer to navi-
gate between diagrams. The
generated inheritance graph
concisely illustrates the class
inheritance structure.

A text representation can be
generated from information in a
CRC model. This information
can be used as a coding specifi-
cation, transferred to other
applications, or used to generate
ollo Client/Server 5.0

Tiriss Announces CB4 Table
a new model. Design informa-
tion can be exported to the
MacA&D or WinA&D model-
ing tools for detailed design and
code generation.

QuickCRC for Windows runs
on Windows 95, 98, and NT.
Models are binary-compatible
between platforms.

Excel Software
Price: US$295
Phone: (515) 752-5359
Web Site: http://www.excelsoftware.com
s Version 1.01
Vista Software announced
the release of Apollo
Client/Server 5.0 for Delphi
developers. Based on the
Apollo product (the company’s
native VCL replacement for
the BDE) and new 32-bit SDE
database technology, this
client/server database engine
offers features Apollo users
have been requesting, includ-
ing minimizing network traffic
by offloading data processing
onto the server. Apollo
Client/Server is compatible
with Delphi 4 and 5 and
C++Builder 3 and 4.

Apollo Client/Server is TCP/IP-
based, which allows developers to
connect client applications to any
computer addressable by an IP
address, from a local intranet
TCP/IP network, to a Web site
on the Internet. Apollo
Client/Server 5.0 includes sup-
port for developing non-
client/server applications.

Users deploy the Apollo Server
application on a networked server
running Windows 95, 98, NT, or
2000. Basic Apollo server configu-
ration requires only that develop-
ers tell the server which directories
contain their database files. Users
then use the TApolloDataSet and
TApolloConnection components in
their client applications to con-
nect to the Apollo Server and
access those registered databases.

Apollo Client/Server 5.0 fea-
tures unlimited concurrent
client connections per server,
support for local and client/serv-
er application development,
support for server-side stored
procedures, user security, trans-
action support, triggers, com-
plete Delphi source for all com-
ponents included, and more.

Vista Software
Price: US$679; upgrade pricing is available.
Phone: (800) 653-2949
Web Site: http://www.vistasoftware.com
Tiriss announced version 1.01
of CB4 Tables, its Delphi wrap-
per for using Sequiter’s
CodeBase instead of the BDE.
CB4 Tables is a set of compo-
nents that can be used any-
where you want to use dBASE
IV, FoxPro, or Clipper tables,
but don’t want to use the BDE.

CB4 Tables’ TTable replace-
ment has almost all functions a
TTable has, and is completely
compatible with TTable. CB4
Tables’ major advances include
no BDE install, but a (small)
DLL sold by Sequiter
Software; compatibility with
the BDE; compatibility with
all standard Database compo-
nents; and support for Delphi
3 and 4.

Tiriss
Price: US$35; US$49 with source.
E-Mail: info@tiriss.com
Web Site: http://www.tiriss.com

http://www.excelsoftware.com
http://www.vistasoftware.com
http://www.tiriss.com

3 January 2000 Delphi Informant Magaz

Delphi
T O O L S

New Products
and Solutions

Vista Software Launches Apollo 5.0

Vista Software announced the

release of Apollo 5.0, the compa-
ny’s native VCL replacement for
the Borland Database Engine.

Some of the new Apollo 5.0
features include Delphi 5 sup-
port (and continued support for
Delphi 3 and 4 and C++Builder
3 and 4); the TApolloEnv com-
ponent, which helps isolate
ine

ASTA Technology Group Ann

Quiksoft Announces EasyM
global/environmental settings
for all TApolloDataSet controls;
a comprehensive online help file
(specific to new TApolloDataSet,
TApolloEnv, and
TApolloDatabase component
architecture); updated sample
programs; improved support for
Woll2Woll’s InfoPower compo-
nents; new properties and meth-
ounces ASTA 2.0

ail Objects Version 5.0
ods for greater power and flexi-
bility; and complete Delphi
source code for TApolloDataSet,
TApolloEnv, and
TApolloDatabase components.

Vista Software
Price: US$379; upgrade pricing is available.
Phone: (800) 653-2949
Web Site: http://www.vistasoftware.com
ASTA Technology Group
announced the release of ASTA
2.0, the company’s multi-tier
development tool for producing
Internet applications. Delphi 5
support has also been initiated
with the release.

In addition to improved per-
formance and numerous feature
enhancements, ASTA 2.0 intro-
duces support for pure multi-
tier programming, including
support for business objects and
Java clients.

New server-side features
include an AstaProvider, which
offers advanced SQL generation
on the server, with events that
can fire before each update,
insert, or delete statement. The
ASTA Business Objects
Manager introduces a “smart
man’s” method of working with
distributed objects. Define serv-
er-side “methods” along with
params and they will become
accessible to client-side work at
design time. Support for Java
clients has also been added with
an event for communication
with Java clients.
Robust ASTA servers run in
three ASTA threading models
— all threading is handled
internally and automatically by
ASTA. ASTA’s client-side
enhancements include
Automatic Client Updates, sup-
port for Remote Directories
(Internet-ready file dialog
boxes), an extended suitcase
model, a progress bar for visual
feedback on socket reads, and
the ability to clone datasets and
their edits.

ASTA Technology Group
Price: Component Suite, US$249; Entry
Suite, US$399 (includes Component Suite
and one server license).
Phone: (800) 699-6395 or
(785) 539-3731
Web Site: http://www.astatech.com
Quiksoft Corp. released ver-
sion 5.0 of EasyMail Objects,
a set of e-mail COM objects
used by software developers to
e-mail-enable their applica-
tions. Applications utilizing
EasyMail Objects can send,
retrieve, view, compose, and
print Internet e-mail. EasyMail
Objects is ideal for developers
using Delphi, Visual Basic,
C++, ASP, and other develop-
ment systems supporting
COM objects.

Version 5.0 enables the devel-
oper to create and retrieve rich
HTML messages, including
embedded items, such as
images, sounds, and video
clips.

The updated IMAP4 Object
enables applications to down-
load a message’s list of attach-
ments so it can screen out
messages containing large or
unwanted items. The SMTP
Object supports ESMTP’s
“Login” and encrypted
“CRAM-MD5” authentication
schemes. The new version also
allows developers to increase
performance by using callback
functions instead of each
object’s standard COM events.
The objects are Y2K-compat-
ible and scale to suit multi-
user environments, such as
Web servers. The objects sup-
port SMTP, POP3, IMAP4,
ESMTP, APOP, HTML, RTF,
plain text, file attachments,
MIME, Base64, UUencode,
Quoted Printable, customized
headers, and optional NT inte-
gration.

Quiksoft Corp.
Price: From US$399 per developer.
Phone: (800) 509-8700 or
(610) 544-3139
Web Site: http://www.easymailobjects.com

http://www.vistasoftware.com
http://www.astatech.com
http://www.easymailobjects.com

4 January 2000 Delphi Informant Magaz

Delphi
T O O L S

New Products
and Solutions

Greg Lief Offers G.L.A.D. Components

The Tomes of Delphi:
Win32 Database

Developer’s Guide
Warren Rachele

Wordware Publishing, Inc.

IISSBBNN:: 1-55622-663-2
PPrriiccee:: US$39.95

(365 pages, CD-ROM)
WWeebb SSiittee:: http://www.

wordware.com
Greg Lief is offering G.L.A.D.
(Greg Lief ’s Assorted Delphi)
components, a collection of over
60 Delphi components and
property editors. The suite
ine

Objective Software Releases

Wise Introduces Wise for W

SSNet Releases NeoSecure
includes three user-friendly fil-
tering components
(TGLFilterDialog, TGLQBE, and
TGLQBE2); TGLHTMLTable,
which converts any dataset to a
 ABC for Delphi Version 5

TUS Announces LocoMotion

indows Installer
formatted HTML table;
TGLXLS, which converts any
dataset to Microsoft Excel for-
mat); TGLPrintGrid, and more.

G.L.A.D. registration includes
all Delphi source code; support
for Delphi 1 through 5 and
C++Builder 1 through 3; a com-
prehensive help file; unlimited
minor updates; and access to
Greg Lief ’s Delphi Knowledge
Base, an online searchable collec-
tion of Greg’s favorite Delphi tips,
techniques, and examples.

Greg Lief
Price: US$69
Phone: (877) REGSOFT
Web Site: http://www.greglief.com/
delphi/components.shtml

Objective Software Technology
Pty Ltd. announced version 5 of
its visual component library,
ABC for Delphi.

ABC is a complete user
interface toolkit, with over 200
components to enhance all
aspects of user interface design,
data presentation, and applica-
tion support. Components
include toolbars and custom
menus; DB tree views;
advanced DB navigation, excep-
tion handling, and help and
hint editing; rich text editing;
button bars; animation and
transition effects; and more.

A new Dataset Adapter
Framework adds support for
ADO, InterBase, MIDAS, and
common third-party datasets.
This framework isolates ABC
components from underlying
dataset functionality, reducing
the interface to a single point of
adaptation. Developers will find
it easier to use ABC in Delphi
5, with a new component
browser, ABC property catego-
ry, and enhanced component
and property editors.

Objective Software Technology
Pty Ltd.
Price: From US$149
E-Mail: sales@obsof.com
Web Site: http://www.obsof.com
Tisfoon Ulterior Systems
(TUS) announced the release of
LocoMotion, a set of native
Delphi VCL components for
motion control and factory
automation.

The set of 13 components
control servo motors, digital
and analog IO, and specialized
components for linked axes,
two-dimensional gantry sup-
port, and analog input filters.

Included are built-in forms
for user configurable parame-
ters, including PID filter para-
meters for servo motors, port
number, and others. These
forms have optional operator-
level and maintenance-level
passwords and complete online
documentation. Additionally,
there are built-in diagnostics
forms with background status
updates for each device.

Currently, the components
only work with the Motion
Engineering PCX/DSP card
under the Windows NT operat-
ing system.

Tisfoon Ulterior Systems
Price: US$4,995 (includes source and
unlimited e-mail support).
Phone: (919) 881-8322
Web Site: http://www.Tisfoon.com
Wise Solutions, Inc., working
closely with Microsoft Corp.,
announced Wise for Windows
Installer, an application installer
that enables application develop-
ers to create installation programs
compatible with Microsoft’s new
Windows Installer technology.

Microsoft’s Windows Installer
was originally designed for
Windows 2000 (formerly
Windows NT 5.0). However,
both the development environ-
ment and the installations created
will support Windows NT 4.0,
and Windows 95/98. Designed to
reduce the administrative require-
ments of managing Windows
workstations, the technology plays
a key role in Microsoft’s Zero
Administration initiative for
Windows. The new Wise for
Windows Installer enables devel-
opers to create installations that
meet the new Microsoft standard.

Wise Solutions, Inc.
Price: US$795
Phone: (800) 554-8565
Web Site: http://www.wisesolutions.com
SSNet, Inc. announced the
release of NeoSecure, which
provides Windows-based soft-
ware authors and proprietary
content providers with a sys-
tem to control and monitor
product distribution and
piracy.

NeoSecure is available as a
plug-in (for embedding in
software source code) and as a
shell, providing protection to
content files, such as music,
video, data, and others.

Both forms of NeoSecure
offer a variety of features, such
as automatic e-mail notifica-
tion of product installs and
registrations; the ability to pre-
vent multiple uses of a serial
number; the ability to instant-
ly disable a given serial num-
ber, thereby disabling all
copies using that number; and
a “backdoor” into every
installed copy for news and
other special announcements.

SSNet, Inc.
Price: NeoSecure Plug-in, US$200
(includes US$50 setup fee and 100 keys);
NeoSecure Shell, US$300 (includes US$150
setup fee and 100 keys).
Phone: (303) 722-5240
Web Site: http://softwaresolutions.net/
neosecure/index.htm

http://www.greglief.com/delphi/components.shtml
http://www.obsof.com
http://www.wisesolutions.com
http://www.Tisfoon.com
http://softwaresolutions.net/neosecure/index.htm
http://www.wordware.com
http://www.wordware.com

5 January 2000 Delphi Informant Magazi

News
L I N E

January 2000

Inprise Announces JBuilder 3 Enterprise Solaris Edition

Scotts Valley, CA — Inprise

Corp. announced JBuilder 3
Enterprise Solaris Edition, mak-
ing the company’s enterprise
ne

Inprise to Support C, C++
Development on Linux

Inprise Previews Products t

Inprise Centralizes Europea
development tools for the Java
platform available for the Solaris
operating environment. JBuilder
3 Enterprise is a comprehensive
, and Delphi

o Support Enterprise Applic

n Customer Support Oper
visual development tool for cre-
ating Java-platform-based appli-
cations and applets that can also
include JavaServer Pages and
Java Servlets technologies,
JavaBeans and Enterprise
JavaBeans technologies, and dis-
tributed CORBA applications
for the Java 2 platform.

JBuilder 3 Enterprise Solaris
Edition also includes support
for the Java 2 Platform,
Enterprise Edition (J2EE).

JBuilder 3 Enterprise Solaris
Edition is available on the Web
at http://www.borland.com.
JBuilder 3 Enterprise Solaris
Edition has an estimated street
price (ESP) of US$2,499 for
new users. Current owners of
any Borland Client/Server or
Enterprise product can purchase
the product for an ESP of
US$1,699. Current owners of
any Borland Professional prod-
uct can purchase the product for
an ESP of US$2,199.
Scotts Valley, CA — Inprise
Corp. announced it is developing
a Linux application development
environment that will support C,
C++, and Delphi development.
The project, code-named “Kylix,”
is set for release this year.

Project Kylix is planned to be a
Linux component-based develop-
ment environment for two-way
visual development of graphical
user interface (GUI), Internet,
database, and server applications.
Plans are for Project Kylix to be
powered by a new high-speed
native C/C++/Delphi compiler
for Linux and will implement a
Linux verison of the Borland
VCL (Visual Component
Library) architecture. The
Borland VCL for Linux will be
designed to speed native Linux
application development and sim-
plify the porting of Delphi and
C++Builder applications between
Windows and Linux.

The Project Kylix design was
influenced by the results from
the Borland Linux Developer
Survey, conducted in July 1999.
The results indicate that devel-
opers are seeking RAD, database
enablement, and GUI design.
The Project Kylix development
environment is planned to sup-
port major Linux distributions,
including Red Hat Linux and
the forthcoming Corel LINUX.

To learn more, visit Inprise at
http://www.inprise.com.
ations

New York, NY — Inprise

Corp. announced the beta
release of the next version of its
Inprise Application Server, as
well as the latest releases of
AppCenter and VisiBroker.

Inprise Application Server
combines the benefits of EJB
and CORBA. With VisiBroker,
customers can create e-business
applications that can handle
the high volumes of transac-
tions required for doing busi-
ness on the Web. The Inprise
Application Server also pro-
vides comprehensive support
for the Java 2 Platform,
Enterprise Edition (J2EE).

Inprise AppCenter is
designed specifically to manage
distributed applications, allow-
ing customers to manage from
the application level rather
than from the hardware per-
spective. It provides a software-
based centralized management
and control for distributed
applications, running on mul-
tiple hardware and software
platforms across multiple loca-
a

tions. This new version of
Inprise AppCenter will support
the management of EJB appli-
cations and will be optimized
for the Inprise Application
Server.

Inprise’s VisiBroker is
designed to facilitate the devel-
opment and deployment of dis-
tributed enterprise applications
based on industry standards
that are scalable, flexible, and
easily maintained.

For more information, visit
http://www.inprise.com.
tion

Scotts Valley, CA — Inprise

Corp. announced it will central-
ize its European customer sup-
port operation in Amsterdam to
provide round-the-clock cus-
tomer support throughout
Europe. The announcement fol-
lows the expansion of Inprise’s
European Professional Services
Organization (PSO) to provide
a center of excellence in
CORBA and Application Server
consulting skills.

Inprise is establishing a
Worldwide Customer Support
Group with three major sup-
port centers around the globe:
Scotts Valley, United States;
Singapore; and Amsterdam, the
Netherlands. It will operate as a
separate entity from the PSO
to ensure that customers have
access to a dedicated expert
resource at all times. Charles
Odinot will head the European
operations.

The group will provide sup-
port across the whole range of
Inprise’s Borland development
tools and enterprise integra-
tion and database products,
and will service customers in
Europe and worldwide.
Customers will be able to

access customer support
through local call numbers in all
major countries, and customer
queries will be routed and han-
dled directly through the
Amsterdam center. Support ser-
vices will also be provided via e-
mail and through the Inprise
Web site.

For more information, includ-
ing customer service phone
numbers worldwide, visit
http://www.inprise.com or
http://www.inprise-europe.com.
Inprise Licenses VisiBroker
CORBA Technology to HP
Inprise Corp. announced a

worldwide technology licensing
agreement with Hewlett-Packard

Company covering Inprise’s
VisiBroker CORBA object request

broker. HP plans to integrate
VisiBroker in its Smart Internet
Usage (SIU) 2.0 solution for
Internet Service Providers.

Financial terms of the deal were
not disclosed.

SIU 2.0 gives service providers
and enterprise-network managers

a consolidated, Internet data-
mediation platform for billing,

tracking, and data mining of sub-
scriber utilization of network

resources and services.
Inprise’s VisiBroker for Java and
VisiBroker for C++ CORBA
object request brokers are

designed to facilitate the devel-
opment and deployment of dis-
tributed enterprise applications
that are scalable, flexible, and

easily maintained.

http://www.borland.com
http://www.inprise.com
http://www.inprise.com
http://www.inprise.com
http://www.inprise-europe.com

6 January 2000 Delphi Informant Magaz

Delphi at Work
Tabbed Notebook / OOP / Memory Management / Visual Inheritance

By John Simonini

Figure 1: The example tabbed not
Embedded Forms
Putting Visual Inheritance to Work

A tabbed notebook presents information to the user in an organized fashion (see
Figure 1). Unfortunately, this interface complicates the coding effort by mixing page

navigation logic with business application logic. Every page presented to the user intro-
duces more business application logic concentrated into one place — making mainte-
nance issues a growing concern.
Embedding forms in the pages of a notebook is a
technique that allows individual forms to contain
discrete business logic, while another totally sepa-
rate form contains the page navigation and com-
mon function logic. By dividing the logic into
manageable units of page navigation and user
interface, the following advantages are realized:

Improved team development efforts.
Improved memory management.
Improved code reuse.

Embedding forms will give the user the percep-
tion of working with one form containing a
notebook full of controls. Only the developer
realizes that each page in the notebook is a sepa-
rate form, allowing for improved team develop-
ment efforts. Two descendant classes of TForm
are created to accomplish the effect:
TEmbeddedNotebook to manage page navigation,
and TEmbeddedForm to handle user interface.
ine

ebook application at run time.
(All source code referenced in this article is avail-
able for download; see end of article for details.)

TEmbeddedForm is a pure virtual descendant of
TForm and is used to represent each page in the
notebook. The abstract methods within
TEmbeddedForm provide the functionality needed
to support generic behaviors, such as save, cancel,
and print, invoked from TEmbeddedNotebook.
TEmbeddedNotebook is an abstract descendant of
TForm that contains a TPageControl and several
TBitButton objects used to manage a collection of
TEmbeddedForm objects.

To embed a form within a TPageControl, follow
these steps (see Figure 2):

Eliminate the embedded form’s border.
Set the embedded form’s parent to the cur-
rent page.
Fit the embedded form to the page.
Show the embedded form modeless.

Embedding a form occurs only when the user
selects a tab on the notebook. No embedded form
is loaded into memory until selected by the user,
resulting in improved memory management.

Divide and Conquer
Tabbed notebooks divide user interface elements into
logical groups to make understanding easier for the
user. Embedded forms do the same for developers,
delivering on the promise of improved team develop-
ment. Dividing or structuring code into logical
groups is a key factor in writing maintainable code.

The TEmbeddedForm class has five abstract methods:
InitializeForm, Print, SaveForm, CancelForm, and
CloseForm; and one property, CanPrint (see Figure
3). These form the functional interface between the
classes TEmbeddedForm and TEmbeddedNotebook.

Delphi at Work
InitializeForm is a procedure invoked every time the user selects a
page. InitializeForm handles any setup logic, such as performing cal-
culations or queries before displaying the form.

Print is a procedure that will execute whatever method of printing
the developer has selected. The CanPrint property is used by the
TEmbeddedNotebook to disable the user’s ability to invoke the print
method when no print functionality is needed.

SaveForm is a function that returns True if the save was successful.
SaveForm is invoked when a user selects Save. If SaveForm returns
False, the page is focused and the user should be prompted to fix
the condition that is causing the save to fail (it could be that the
embedded form is failing an edit or information is missing).

CancelForm is a function that returns True if the cancel was success-
ful. CancelForm is invoked when a user selects Cancel. In the event
CancelForm returns False, the page is focused and the user should be
prompted to fix the condition that is causing the cancel to fail.
7 January 2000 Delphi Informant Magazine

// Size, position, initialize, and show the form
// associated with the page.
procedure TFormEmbeddedNoteBook.ShowForm(

Form: TEmbededForm);
begin

Form.BorderStyle := bsNone; // Eliminate border.
// Set Parent as the active page.
Form.Parent := PageControl1.ActivePage;
Form.Align := alClient; // Make form fit the page.
Form.InititalizeForm; // Display form.
SetButtons(Form); // Call to set print btns.
Form.SetFocus;

end;

Figure 2: Embedding one form within another.

// Embedded form pure virtual class definition.
TEmbeddedForm = class(TForm)
protected

FCanPrint: Boolean; // True if form has print capability.
public

property CanPrint: Boolean read FCanPrint default False;
// Housekeeping logic.
procedure InitializeForm; virtual; abstract;
procedure Print; virtual; abstract; // Print form.
// Save data changes.
function SaveForm: Boolean; virtual; abstract;
// Cancel data changes.
function CancelForm: Boolean; virtual; abstract;
// Close the form.
function CloseForm: Boolean; virtual; abstract;

end;

Figure 3: The TEmbeddedForm class definition.

// Return embedded form based on the notebook page passed.
function TfrmDiDemo.FindEmbeddedForm(aPage: Integer):

TEmbeddedForm;
begin

case aPage of
efCustList: Result := TfrmCustomer.Create(Self);
efOrders: Result := TefOrders.Create(Self);
efOrderItm: Result := TefOrderItems.Create(Self);

else
Result := nil;

end;
end;

Figure 4: Loading an embedded form.
CloseForm is a function that returns True if the user has handled all
pending changes. CloseForm, as can be seen from the supplied source
code, is best utilized by calling CanCloseQuery, passing in a Boolean
variable. Nominally, CloseForm should be used to check for any
pending changes. If changes exist, the user should be prompted for
the disposition of these changes.

The most effective way to implement TEmbeddedForm is to sub-
class an intermediate class. The intermediate class will implement
the generic rules for this project, such as behaviors for SaveForm,
CancelForm, and CloseForm. Sub-classing all the other embedded
forms to be used from the intermediate class will improve code
reuse. However, for simplicity’s sake, this is not the route I chose to
use with the supplied demonstration project.

Implementing the class TEmbeddedNotebook is as simple as overrid-
ing one abstract method, FindEmbeddedForm, which returns a
TEmbeddedForm (see Figure 4). Taking the time to look over the
source for TEmbeddedNotebook reveals quite a bit of code that han-
dles the drudgery of housekeeping.

Under the Hood
TEmbeddedNotebook is the real workhorse here. It manages a TList
of TEmbeddedForm objects, as well as all the generic processing for
the TEmbeddedForm objects. TEmbeddedNotebook delivers improved
memory management and improved code reuse. The central focus of
TEmbeddedNotebook is the TList of TEmbeddedForm objects named
FormList. TEmbeddedNotebook handles these tasks:

It initializes FormList;
displays and hides embedded forms on page turns; and
invokes generic processing, such as save, cancel, close, and print.

As previously mentioned, FormList is a TList of TEmbeddedForms. To
realize improved memory management, the embedded forms won’t be
created until they’re requested by the user clicking on their respective
page. To this end, FormList is initialized and loaded with nil pointers,
one for each TTabSheet on the TPageControl (see Figure 5). The reason
for loading nil pointers is that retrieving TEmbeddedForms from
FormList is dependent upon an exact correlation between the page
index of the selected page and the corresponding TEmbeddedForm.

Showing a TEmbeddedForm occurs when TEmbeddedNotebook responds
to the TPageControl ’s OnChange event. GetForm is the function respon-
sible for returning the correct TEmbeddedForm (see Figure 6).

The page index of the active form is used as the index into
FormList. If the pointer is assigned, then TEmbeddedForm is
returned. Otherwise, the page index of the active page is passed to
// Set up the PageControl to contain embedded forms.
// Create a TList to hold the TEmbeddedForm Objects.
procedure TFormEmbeddedNoteBook.InitializePageControl(

Sender: TObject);
var

Index: Integer;
begin

// Turn to the first page.
PageControl1.ActivePage := PageControl1.Pages[0];
SetPages; // Set Visible property for tabsheets.
FormList := TList.Create; // List of available forms.
// Create placeholder for each tab.
for Index := 0 to PageControl1.PageCount -1 do

FormList.Add(nil); // Empty placeholders.
PageControl1Change(Sender); // Show 1st form.

end;

Figure 5: Setup for an embedded form list.

// Return selected form if available;
// otherwise raise exception.
function TFormEmbeddedNoteBook.GetForm: TEmbeddedForm;
var

PageNum: Integer;
begin

PageNum := PageControl1.ActivePage.PageIndex;
if not Assigned(FormList.Items[PageNum]) then

try // If form doesn't exist.
FormList.Delete(PageNum); // Clear nil placeholder.
// Insert new form.
FormList.Insert(PageNum, GetEmbeddedForm(PageNum));

except
on E: EFormNotFound do // New form creation failed.

// Replace nil placeholder.
FormList.Insert(PageNum, nil);

end;
// Return contents of FormList.
Result := TEmbededForm(FormList.Items[PageNum]);

end;

Figure 6: Retrieving the selected embedded form.

// Call a routine to return the embedded form
// for a given page.
function TFormEmbeddedNotebook.GetEmbeddedForm(

PageNum: Integer): TEmbeddedForm;
begin

Result := FindEmbeddedForm(PageNum);
if Result = nil then

Raise EFormNotFound.Create('Form Not Found');
end;

Figure 7: Driving logic for requesting embedded forms.

Delphi at Work

// Process each EmbeddedForm within FormList, with the
// function provided as the parameter aFunction.
procedure TFormEmbeddedNoteBook.ProcessAllForms(

aFunction: TFunctType);
var

Index: Integer;
begin

// For all the forms in the list...
for Index := FormList.Count -1 downto 0 do

// If form has been assigned...
if Assigned(FormList.Items[Index]) then

// Call the passed method with the form.
aFunction(TEmbeddedForm(FormList.Items[Index]));

end;

Figure 8: Driving logic for generic processing of all loaded
embedded forms.

// Print a screen dump report.
procedure TFormEmbeddedNoteBook.btnPrintClick(

Sender: TObject);
begin

GetForm.Print;
end;

Figure 9: An example of specific processing of a selected
embedded form.

// Close all embedded forms. If all forms are closed and
// destroyed, the result is True, otherwise it's False.
function TFormEmbeddedNoteBook.CloseEmbeddedNotebook:

Boolean;
var

Index: Integer;
begin

try
Screen.Cursor := crHourglass;
Result := True;
Index := ClearFormList;
if Index > -1 then

begin
Result := False;
PageControl1.ActivePage.PageIndex := Index;
Exit;

end
else

FormList.Free;
finally

Screen.Cursor := crDefault;
end;

end;

Figure 10: Ensure all modifications have been processed before
the embedded notebook is closed.
the GetEmbeddedForm function, which creates and returns the
correct TEmbeddedForm (see Figure 7).

Hiding a TEmbeddedForm is accomplished by responding to the
TPageControl ’s OnChanging event. The OnChanging event has a
variable Boolean parameter, AllowChange. As a result of calling
TEmbeddedForm’s CloseForm function, a Boolean will be returned
that’s used to set the state of AllowChange. The recommended
practice is for TEmbeddedForm to perform its final editing and
post all data changes here. If TEmbeddedForm fails an edit or a
post, a message should be displayed to the user explaining how to
correct the error, and a Boolean with a value of False is returned.
This prevents the user from turning to another page until the error
is corrected or the user cancels all pending changes.

Generic processing comes in two flavors: processing that occurs to
all embedded forms currently loaded (ProcessAllForms) and process-
ing that occurs only to the embedded form currently displayed
(GetForm). Save, cancel, and close, by default behavior, fall into the
“Occurs to all forms” flavor of processing. ProcessAllForms is the
method responsible for iterating through the list of loaded forms. It’s
8 January 2000 Delphi Informant Magazine
a method that accepts a procedural variable that points to a method
that accepts a TEmbeddedForm as a parameter (see Figure 8).

Printing falls into the other flavor of processing, which simply
invokes the selected embedded form’s Print method (see Figure 9).

Safety First
To ensure that changes the user has made are handled correctly when
the TEmbeddedNotebook is closed, generic processing similar to “Occurs
to all forms” is used. Because data integrity is of paramount importance,
the user cannot be allowed to close the TEmbeddedNotebook until all
changes have been saved or canceled by the user.

The following is the chain of events for ensuring the integrity of the
changes the user has made:

Handle TEmbeddedNotebook’s OnCloseQuery event.
Invoke the loaded embedded form’s CloseForm function.
Set the value of TEmbeddedNotebook’s CanClose variable with the
net result of all the embedded form’s SaveForm function calls.

When TEmbeddedNotebook’s OnCloseQuery event is fired, it
invokes CloseEmbeddedNotebook (see Figure 10), which invokes
ClearFormList (see Figure 11). ClearFormList iterates though
FormList, invoking the CloseForm function for all loaded
TEmbeddedForms. If CloseForm returns True, TEmbeddedNotebook
frees that TEmbeddedForm. Otherwise, the corresponding page is
focused and TEmbeddedNotebook’s CanClose variable is set to
False, allowing the user to remedy the situation and continue.

Great care has been taken to ensure the user cannot close the
TEmbeddedNotebook without disposing of their changes. Save and
Cancel buttons have also been provided for the user’s convenience.

Delphi at Work

// This routine calls the ProcessAllForms with CloseForm
// method of all embedded forms. If succesful, the form is
// freed and removed from the FormList.
function TFormEmbeddedNoteBook.ClearFormList: Integer;
var

Index: Integer;
begin

Result := -1; // Set result to all deleted.
ProcessAllForms(CloseForm); // Close all forms.
// For all the forms in the list.
for Index := FormList.Count -1 downto 0 do

// If any forms are still loaded...
if Assigned(FormList.Items[Index]) then begin

// Form cannot be closed, return the index.
Result := Index;
Exit; // Exit the for loop.

end;
end;

Figure 11: Clean up of loaded embedded forms.

// Light data-handling function buttons.
procedure TFormEmbeddedNoteBook.SetDataButtons(

State: Boolean);
begin
btnSave.Enabled := State;
btnCancel.Enabled := State;

end;

// Handle buttons to notify user of the state of the data.
procedure TFormEmbeddedNoteBook.DSChanged(

var Message: TMessage);
begin

SetDataButtons(Message.lParam = wmpTrue);
end;

Figure 12: Data state-handling routines.
The Save and Cancel buttons’ Enabled property is set using a user-
defined Windows message WM_REMOTEDSCHANGED. Setting
the lparm parameter of TMessage with a 1 or 0, depending on the
state of the data or the presence of updates, communicates the state
of the data (see Figure 12). The definitions needed for
WM_REMOTEDSCHANGED are in the TYPES.PAS unit.

Polly Want a Cracker?
Polymorphism allows a descendant class to operate differently
than its parent class for the same method call. For any framework
to be usable, it must allow for its default behaviors to be
changed. In nature, this is called evolution. Object-oriented
design should always allow for the evolution and maturation of
classes to adapt to changing business rules.

Although every attempt has been made to default to usable behaviors,
“No plan ever survives contact with the enemy.” Examples of default
behavior are the processing for save, cancel, and close functions,
which assume the user wants to operate on all pages generically.

The two most likely behaviors that will need to be changed are:
Changing tabs forces the user to resolve data changes (save or can-
cel); and, function button clicks process all pages or a single page.

At the initial design of embedded forms, certain assumptions were
made. The first assumption was that the information contained on
the embedded forms was interrelated. Assuming the information was
interrelated, the design stance was to force the user to either save or
cancel all pending changes when they select a new tab. The second
assumption was that when the user clicked Save or Cancel, the action
would take effect in all loaded forms.
9 January 2000 Delphi Informant Magazine
Altering the behavior of the embedded notebook when pages are
turned can be accomplished in the following manner. In the
TPageControl ’s OnChange event, the CanChangeTabs function is
invoked. CanChangeTabs returns the result from calling the
TEmbeddedForm’s Close function. By overriding this behavior to
return True, the pages of the notebook can be changed without hav-
ing to resolve pending data changes.

Altering the function button behaviors of TEmbeddedNotebook can
be accomplished in the following manner. When the Save or Cancel

button is clicked, ProcessAllForms is invoked passing the Save or
Cancel methods, respectively. This behavior can be changed by over-
riding the btnSaveClick and btnCancelClick event handlers. Both
data state buttons, btnSave and btnCancel, invoke ProcessAllChanges
by passing a procedural variable. If GetForm were called in its place,
the result would be the currently focused TEmbeddedForm, and its
SaveForm or CancelForm function could be invoked.

It’s very relevant to point out that, because TEmbeddedForm is a pure
virtual class, it can very nicely be implemented as an interface.
Implementing this scheme as an interface will allow pre-existing
forms to be leveraged as embedded forms. (For more information
regarding interfaces, see Cary Jensen’s article “Interfaces: An
Introduction” in the April, 1998 Delphi Informant Magazine.)

Conclusion
Embedded forms provide the following business advantages as stated
in the introduction of this article: improved team development by
allowing multiple developers to work simultaneously on what the
end user perceives as one form; improved memory management by
only loading those embedded forms users have selected; and,
improved code reuse through the housekeeping and data integrity
code supplied in the base class of TEmbeddedNotebook.

The embedded forms described in this article were designed as a
team development technique, and as such they came to life through
the joint efforts of a team. I would like to credit and thank the fol-
lowing people for all their efforts in making embedded forms a suc-
cessful technique:

Anil Thomas for his implementation of the procedural version
of embedded forms.
Mike Carkitto for his immeasurable help in implementing the
object-oriented version of embedded forms.
Ed Hauswirth, my friend and mentor, and the person who
proved to me, much to my chagrin, that C++ is not the final
word in PC development. ∆

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in
INFORM\00\JAN\DI200001JS.

John Simonini lives in the beautiful Pocono Mountains of Pennsylvania, with his
lovely wife, two adorable sons, and two goofy dogs. John is a Senior Consultant
in the employ of Source Technology Corp., and can be contacted by e-mail at
wizware@epix.net or jsimonini@sourcetechcorp.com.

10 January 2000 Delphi Informant Magaz

Distributed Delphi
Multi-threading / DCOM / Database / Delphi 4, 5

By Michael J. Leaver

Figure 1: One-to-one connectio
Request Threads
One Solution to Resource-sharing Problems

In an ideal world, a server system would have unlimited resources available to an
unlimited number of clients. That world doesn’t exist just yet. For example, a database

server can only support a limited number of client connections. The database, in this
case, is the limiting resource.
One way around this problem is the use of
Transaction Processing Monitors, e.g. Microsoft’s
Transaction Server (MTS) or BEA’s Tuxedo. This
provides for three-tier distributed processing, with
the TP Monitor taking care of resource sharing and
other important things, such as transactions and data
integrity. Indeed, Delphi 4/5 allows for easy creation
of MTS objects, but MTS has its drawbacks and is
not the answer for all situations. Other TP Monitors
may be overkill for a small system, or simply too
expensive in licensing, development, and support
costs. There’s also a steep learning curve to consider.

This article describes a resource-sharing method
implemented using Delphi 4 Client/Server Suite
and Microsoft’s Distributed Component Object
Model (DCOM), with the resource being a data-
base (the techniques apply equally well to Delphi
5). The method could equally be applied to any
modern programming language and operating sys-
tem that supports threads and remote procedure
calls. The resource need not be a database; it
could be a file server, printer, etc. The method
described in this article is based on one used with-
in a workflow-imaging trade finance product
called Prexim, developed by China Systems.

One-to-one Connections
It’s a simple task to create a multi-threaded DCOM
server using Delphi 4 Client/Server Suite. Such a

server is capable
of providing ser-
vices to a poten-
tially unlimited
number of
clients, with the
basic limiting
factors being
memory and
processing power.ns.
ine
Servers are never that simple, however. For exam-
ple, they usually rely on services provided by other
servers, such as a relational database server.
Connections to these underlying servers are gener-
ally expensive in terms of resource usage, and
must, therefore, be used sparingly. It isn’t practical
for each thread of a server to own a dedicated
connection to another database server. For exam-
ple, if there are 100 clients connected to a server,
there will be 100 corresponding connections to
the underlying database server (see Figure 1).

This is clearly impractical, and in many cases
impossible. It’s a huge waste of resources, as those
database connections are unlikely to be used all
the time by all the clients. A better solution would
be for clients to share these precious resources.

Threads
How do you share a connection to a database
server? A simple DCOM server would create a
dedicated connection to the database server for
each client connection. What’s needed is a pool of
connections that all clients can share. This sharing
must be transparent to the clients who need not
be aware of such complexities of implementation.

One solution is for the DCOM server to open a
number of connections to the database server
when it starts. The number of connections may be
configurable and fixed once the DCOM server
starts. Preferably, it should be dynamic and
increase or decrease on the fly depending upon
the load, i.e. load balancing.

Now when a client connects to the DCOM server, it
doesn’t create a new connection to the database serv-
er. Instead it asks one of the threads created earlier to
do the processing and return the results, which in
turn will be passed back to the client (see Figure 2).

Figure 2: Request thread connections.

Figure 3: A diagram of the communication between the client
and request threads.

Distributed Delphi
There are two types of threads being discussed here. When a client
connects to a multi-threaded DCOM server, the server spawns a
thread. This thread, which we’ll call a “client thread,” is responsible
for servicing that client. Therefore, each client connection to a
DCOM server has its own client thread. We’ll call the threads that
are spawned when the server initializes and created before any clients
connect to the server “request threads.” It’s these limited request
threads that are shared by the potentially unlimited client threads.

The problem now is how to communicate with those request threads.
We need an efficient method of inter-thread communication.

Communication
To get straight to the point, one answer is to use good-old-fash-
ioned First-In-First-Out (FIFO) queues. This avoids starvation,
because no priorities are involved. Because we’re dealing with
threads, synchronization of access to these queues is critical to
avoid difficult-to-find data corruption bugs. Using mutex
objects, semaphores, or many of the other objects available in
modern operating systems can solve this. Luckily for us, Delphi
provides a simple interface to these potentially difficult-to-use
operating system objects.

Communication between these threads works in the following order.
The DCOM server starts and spawns one or more request threads.
Each request thread has its own connection to the database server,
and when a client connects to the DCOM server, a client thread is
spawned. The client thread can’t talk directly to the database server
because it has no connection to it. For the client to talk to the data-
base server, it must ask a request thread to perform that task on its
11 January 2000 Delphi Informant Magazine
behalf. The client thread does this by creating an inbound request
record, and placing it onto the inbound request queue.

A request record describes what processing the client thread wants
the request thread to perform. The client now waits for the result
(as we will discuss later, it need not block on the wait). One of
the request threads takes the item out of the inbound queue and
performs the task, which involves talking to the database server
via the connection the request thread owns, e.g. the BDE.

The results are placed into an outbound request record and put
onto the outbound request queue. An outbound request record
contains the results of the processing, and any other relevant infor-
mation, such as error messages. The client thread, which has been
waiting for the result, takes the outbound request record off the
outbound queue. After any further processing, the results are
returned to the calling client (see Figure 3).

Spawning Request Threads
When the DCOM server starts, it must spawn one or more request
thread for the connections to the database server. More threads give
more throughput, but increase memory use. Also, at some point
the throughput from having more threads decreases. Ideally, some
method of load balancing should be used, but that’s beyond the
scope of this article.

The reqint.pas unit contains a function named RequestThreadsStart
that must be called by the DCOM server when it starts. This
function initializes synchronization objects and spawns the
required number of request threads. It allows for initialization
failure of one or more request threads, i.e. five requests may be
asked for, but, perhaps, only two request threads can actually be
created. The minimum number required is specified as an argu-
ment to the function.

The first thing RequestThreadsStart does is create the inbound and
outbound queues, as well as the semaphores used to coordinate read-
ing from and writing to those queues. It would be very inefficient to
poll the queues waiting for new records to arrive, so a more efficient
method using semaphores is used instead.

Making Requests
The client threads must create a request record detailing what is
required of the request threads. This record must then be placed
onto the inbound queue. Method1 and Method2 demonstrate how
simple this is (see Figure 4). An inbound request record is filled with
the request details. Then g_RequestInterface.RequestSync is called to
send the request to the request threads and wait for the result.

The RequestSync function is an interface for RequestIn and
RequestOut, where RequestIn passes the request onto the request
threads, and RequestOut checks to see if the results are available
for collection. If Method1 or Method2 wanted to make an asyn-
chronous request, they would call RequestIn and RequestOut sepa-
rately without calling upon RequestSync.

How does a client thread know which results to collect from the out-
bound queue? By taking results with the correct result handle. When a
request is made, it’s given a unique result handle that is simply a unique
number (unique for each server process), the current date and time, and
a random string of characters. The date and time are stored in the result
handle, so the server knows if a result has timed out. A random string of
characters is placed on the end to reduce the chance that another client

// Take out of g_InQ and place items in g_OutQ.
while not Self.Terminated do begin

inq := TakeFromQueue;
if Self.Terminated then

Break;
// Process it.
outq := ProcessItem(inq);
if outq = nil then

Continue;
// Add it to the out Q.
AddToQueue(inq^.request_in.rhandle, outq);
Dispose(inq);

end;

Figure 5: TRequestThread.Execute showing what each request
thread does.

Figure 4: The example DCOM server displayed in the Type Library

Distributed Delphi

function AsyncExample(const in_arg: Integer;
var out_arg: string): Boolean; Async;

begin
// Do some processing. Set the value of out_arg.
// Return some result.
Result := True;

end;

procedure UsingTheExample;
var

AsyncReturn: Boolean;
SomeString: string;

begin
// Call our async function.
AsyncReturn := AsyncExample(123, SomeString);

// At this point we can continue doing something
// else while that function does whatever it does.

// Let's get the result.
if AsyncReturn then

AnotherString:= 'The string result is:' + SomeString
else

AnotherString:= 'Error';
end;

Figure 6: Calling an asynchronous function with no change
in method.
will try to steal another’s results. Remember that the result handle may
be used asynchronously at a later point by the client, so it makes sense
to make it a single string instead of multiple strings.

As explained earlier, semaphores are used to signal both client
threads that results are available for collection, and request threads
that a request has been made. g_SemInQ is the inbound semaphore,
and g_semOutQ is the outbound semaphore.

Processing Requests
TRequestThread.Execute contains a simple loop that shows what
each request thread does. First it takes the first request record it can
get from the inbound queue (via the function TakeFromQueue).
Next it processes the item, places the results onto the outbound
queue, and frees the memory used by the inbound request, as it’s
no longer required (see Figure 5).

Collecting Results
The TRequestThread.RequestOut member function is used to collect the
results from the request threads. Supplied with a request handle (previ-
ously created when the client thread made a request via RequestIn) and
a place to store the results, it first checks to see if the request has timed
out. If a request is over a certain age, that request’s results can’t be col-
lected because they will have been garbage collected and removed from
the outbound queue. If the results weren’t purged, the outbound queue
would eventually grow too large if the client threads didn’t collect their
results. Remember that if an asynchronous request had been made, the
client may be on another machine. The client program may exit before
collecting the results, or the network connection may go down. There
are many reasons why results may never get collected. Deciding if a
result may not get collected isn’t possible.

Having resolved that the request isn’t too old, the outbound queue sem-
aphore (g_SemOutQ) is checked. If it’s signaled, then there are results in
the queue, else the queue is empty and hence the results aren’t available
yet. The queue is searched for a matching request that hasn’t been han-
dled, i.e. another thread hasn’t already taken the results. Because the list
is locked, there is no need for mutexes or other thread synchronization
methods when it’s searched. Only one request thread can search the
outbound queue at a time. A result can’t be taken from the queue dur-
ing the search, so its handled state is flagged as being True.

If the result was found, it can then be removed from the queue and
returned to the client thread. When no result is found, the out-
12 January 2000 Delphi Informant Magazine
bound queue semaphore must be re-signaled to indicate
that there are still pending results. Without re-signaling,
other request threads would assume the queue is empty.

Asynchronous
Imagine an extension to Delphi that allowed asynchro-
nous function calls without the programmer needing to
worry about how it’s actually implemented. Figure 6
shows that the asynchronous function can be called as per
any other function with no special considerations.

Control returns to the procedure before the function has
completed and returned its result. The procedure would
only block waiting for the result if it tried to use one of
the values returned, or set by the asynchronous function,
e.g. AsyncReturn or out_arg. Wouldn’t that be a very use-
ful extension to any language?

With request threads, it’s possible to do this now within a
process and outside of the process. For example, asynchronous COM
calls are possible with request threads. The client would call the
COM method as usual, but instead of getting its result, the client
would get a unique handle. At a later point, the client would call the
COM method again with the handle supplied earlier and would now
get the results back. The client who originally made the call need not
supply the handle. Another client process on another machine could
collect the results as long as it used the correct handle.

 editor.

Distributed Delphi
Unfortunately, the client must be aware that the call is asynchro-
nous and must store the handle. There is also the possibility that
the client will never collect the result, so some garbage collection
must be performed periodically within the server. Security must
also be taken into consideration so that clients don’t try to steal
results meant for others.

Improvements
There are many ways to improve upon the simple method shown
in this article, and there are still many more things that haven’t
been described.

First, it must be said that the example code isn’t what it should be
and can clearly be improved upon. Delphi is an object-oriented
language, but the example code given doesn’t make much use of its
object-orientation. A generic request threads class would be a very
powerful class indeed.

Request threads can span across multiple calls. For example, a client
thread may need to make multiple calls to the same request thread
because that request thread has state, e.g. a cursor connection to the
database server, or perhaps even an open database transaction. This
is possible within request threads simply by locking a request thread
to one client thread via a unique handle. This handle can be passed
each time the client thread needs to use a specific thread. Locking a
thread doesn’t necessarily mean other client threads can’t use it while
it’s idle. For example, if the request thread is locked because it has a
cursor open, it doesn’t mean other client threads can’t use it to read
other tables as long as the cursor isn’t affected. It all gets complicated
and other issues arise, such as unlocking threads, orphaned request
threads, etc. For that reason, it’s not described in this article.

Because requests are defined within records and are used within
queues, it allows for easy recording of requests for later playback. For
example, a database transaction could be performed by recording
requests and storing them in a list instead of sending them to
request threads one by one. Later, the entire list could be sent to a
request thread for immediate processing as a single block of requests.
The block of requests could be processed within one database trans-
action within the request thread.

The example code also doesn’t show how to ensure that the DCOM
server has completed initialization before client calls are accepted. If
a client call is received before the queues have been set up, for exam-
ple, then problems may occur. Request records may need to contain
a large amount of data, as they need to support all types of requests.
To reduce memory usage, variant records should be used, or perhaps
even variant variables.

Request threads beg for tuning parameters, e.g. TTL (time-to-live)
values for request in the queues, time-out values when waiting for
results, optimal number of threads to use, etc. This hasn’t been given
in the example code, but it’s not difficult to add. What’s more difficult
is automatically creating the best values for a specific implementation.

Conclusion
Request threads allow a simple way to make asynchronous calls to
shared resources. Delphi allows easy creation of such a method
because of its strong support for COM, threading, and access to the
Win32 API.

The source code, which is available for download (see end of article for
details) includes a demonstration COM out-of-process server and a
13 January 2000 Delphi Informant Magazine
client test program. To enable threading on the server side, and so allow-
ing the server to process multiple client calls simultaneously, the
Borland-supplied source code thrddcf.pas has been employed. Without
this, the client’s requests would be queued by the server and processed
serially, one by one. This file may be found in the directory
Demos\Midas\Pooler. Because of the multi-threaded nature of the serv-
er, it can’t be used with Windows 95. It should be used on Windows
NT only, whereas the client program can be used on Windows 95 or
NT. Before using the client program, the server must be registered. This
can be done by executing the server with the command line argument
/regserver (or more easily from the Delphi IDE). ∆

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in
INFORM\00\JAN\DI200001ML.

Michael J. Leaver is the Product Manager for the China Systems Prexim system.
China Systems is a world leader in trade finance technology. Prexim is a workflow
imaging solution for trade finance processing written using Delphi 4 C/S. Michael
can be reached via e-mail at MJLeaver@csi.com.

14 January 2000 Delphi Informant Maga

Sound + Vision
Multimedia / Experts / Tool Services / Delphi 1-5

By Alan C. Moore, Ph.D.

Figure 1: Subproperties of XSoun

Property Descript

SoundSource Type of s
ter points
ssAlias_ID
The 16-b
ssMemor
flags in fd
SND_RES

Filename A string
lpszSoun
specifies

Yield A Boolea
requeste

hmodValue Of type H
meter (hm
dle of the
the resou
specified

?SoundPlayOption Of type T
sents one
Exit. All w
asynchro
A Multimedia Assembly Line
Part II: Generating a Component

Last month we began building a Delphi sound expert (Wizard) that produces multime-
dia components. Based on a simpler expert, SndExprt 1.0, it adds sound-playing

(.WAV file) capabilities to any component. We also dealt with the expert structure and
the user interface. Before we take a detailed look at the code-generating engine, let’s
review that structure.
The sound-generating property, SoundPlayEvents,
and its subproperties are arranged in a hierarchy.
The main property added to each component,
SoundPlayEvents, contains a series of properties,
XSoundPlayEvent, where X is the name of one of
the sound events supported. These properties,
such as ClickSoundPlayEvent,
EnterSoundPlayEvent, and ExitSoundPlayEvent,
contain their own subproperties. Those that man-
age the playing of sounds are shown in Figure 1.

With SoundSource, the flags in fdwSound
(SND_ALIAS, SND_FILENAME, and
SND_RESOURCE) determine how the Filename
property will be interpreted as a file name, a
zine

dPlayEvent.

ion

ound source to which the FileName parame-
; enumerated type: TSoundSource (ssAlias,
, ssFilename, ssMemory, ssResource, ssNone).
it version with sndPlaySound: (ssFilename,
y). It’s associated with PlaySound’s fdwSound
wSound (SND_ALIAS, SND_FILENAME, and
OURCE).
associated with PlaySound’s first parameter,
d, a pointer to a null-terminated string that
 the sound to play.
n property that determines whether the
d sound can interrupt a sound that’s playing.
MODULE. Associated with the second para-
od) of the PlaySound function. It’s the han-

 executable file (DLL or EXE) that contains
rce to be loaded. Unless SND_RESOURCE is

, this parameter must be set to nil.
?SoundPlayOption, where the “?” repre-
 of the event classes, e.g. Click, Enter, or
ays of playing a .WAV file (synchronously,

nously, in a loop) are supported.
resource identifier, or an alias for a system event.
Filename is a string holding the name of the file,
resource, or other location. All of these subproper-
ties are included in the ?SoundPlayEvent property,
where “?” is the name of one of the sound events.

How do we program our expert to generate a
component with this new composite property?
You’ll notice we use several types and data struc-
tures from the unit, SndTypes.pas, introduced in
last month’s installment. Now let’s explore some of
the details.

Programming the Expert Engine
In writing an expert, its engine is where the real
programming generally takes place. It’s also where I
had to write most of the new code for the updated
expert. In both the original and revised experts, I
found it helpful to have a prototype of the type of
component the expert would generate to which we
could refer. That prototype included all the new
functionality and properties we’ve been discussing.

After you’ve made all your choices and clicked
Finish, the code for your new component is gen-
erated (CompGen1.pas) and opened in the
Delphi IDE editor. There you can look at the
code, edit it, or save it. Let’s concentrate on the
component-building code. Here is the most
important routine in the engine:

procedure WriteALine(StringIn: string);
begin

TempMemoStr.Add(StringIn);
end;

TempMemoStr is a StringList that collects all of
the code to be saved in a file. Because we call
this method for every line of generated code, the

TSoundPlayEvents = class(TPersistent)
private

FClickSoundPlayEvent : TClickSoundPlayEvent;
public

constructor Create(AOwner: TComponent);
published

property ClickSoundPlayEvent : TClickSoundPlayEvent
read FClickSoundPlayEvent write FClickSoundPlayEvent;

end;

Figure 3: The TSoundPlayEvents class in a generated component.

Sound + Vision
CompGen1.pas unit is now too large to include in its entirety.
Instead, we’ll highlight some of the more interesting routines.
Compared to the earlier version, the WriteTypes method is
expanded considerably. It writes the support types and a specific
Sound Option Type for each enabled event. In the
WriteSoundOptions method, lines such as the following read the
data collected from running the expert, and produce the proper
types by using strings associated with the event to name them:

if spPlayReturn in
SoundFactorsArray[j].SoundPlayOptions then

AddSoundOption(EventPrefixes[j] + 'spPlayReturn');

The EventPrefixes array stores prefixes for each event with an appro-
priate name: “ck,” “dd,” and “do” are prefixes for the Click,
DragDrop, and DragOver events, respectively.

There are other significant changes in this new version that are
necessary to create the new property structure in the target com-
ponents created. In the previous version, we simply added two
properties to each generated component. Here we add just one,
but it’s a monster with multiple class properties, each of which
has a number of subproperties. Figure 2 shows the new property
from a newly produced component in the Object Inspector with
a few of these subproperties shown.

The new Sound Option Types we just discussed provide the basis for
the most important subproperties used under each event subproperty.
The work of writing the main component class and the host of event
subclasses is done in the WriteNewClasses procedure. There are several
nested procedures within this method, including WriteMainClass,
which writes the new component class, and WriteSoundClasses, which
writes a new class for each Sound Event. Let’s examine that procedure,
as it demonstrates several interesting issues. Pay particular attention to
the nested procedure within WriteSoundClasses, WriteSoundClass. This

latter procedure, shown in
Listing One (on page 17),
writes each of the individual
sound event classes.

As you can probably guess,
this one procedure writes the
bulk of the new property
with all of its subproperties.
The variable or changing
portions of this code depend
upon a number of arrays of
strings: BasicEventNames,
which includes the same
event names used with the
check boxes (Click,
DragDrop, etc.);
EventNames, which is the
name of the actual method
used to fire the event
(DoEnter instead of Enter,
for example); and a smaller
array, ParametersArray,
which contains the strings
used for parameters when
the inherited methods are
called in the overridden
event methods.

Figure 2: Main property with a
few of these subproperties in a
new component shown in the
Object Inspector.
15 January 2000 Delphi Informant Magazine
In this code, and in code we examined last month, EventMax is
used a great deal. This constant represents the number of events
supported minus one, because all of the iterations are zero-based.
It’s used in most of these arrays, as well as in most iterations.
By using this constant, it will be easy to change this code by
adding or deleting supported events. For example, take a look
at WriteConstructors. A procedure nested within it,
WriteSoundClassesConstructors, iterates through all possible events
and writes a constructor for each one the user has selected.
Similarly, the WriteEventHandlers procedure writes event handlers
for those events.

The code in Listing One may seem like a lot of code for producing a
series of rather simple classes, but it does more than just write all of
these classes. Let’s start with the individual classes. First, we need to
determine which events will be sound-enabled by iterating through
the check-box flags with:

for j := 0 to EventMax do
if EventCheckBoxArray[j]= ecbsChecked then

...

Then we build an array that contains information on which events
are sound enabled. We use the NewClasses variable to monitor how
many are actually used. As we iterate through all of the possible
events, we build that array:

NewClassArray[NewClasses] := BasicEventNames[j];

BasicEventNames contains the basic names of the enabled events.
We use this array later to write the implementation code. The code
that follows simply writes the remainder of the class declaration.
When we reach the last line, we call a nested procedure with:

WriteSoundPlayEventsClass;

This procedure writes another class — the main class that contains all
of the individual sound-enabled events and their subproperties. With
this procedure, we make good use of the NewClassArray to create a
property for each sound-enabled event. Figure 3 shows the generated
code for this class.

You’ll note that we have just one event — the Click event. We could
just as easily have three or 12. We must create one more class — the
component class. Some of the information for this class comes from
the first page of our expert (see last month’s article), its class name,
and its ancestor class. Other than that, the code is identical for any
component created with this expert. Figure 4 shows a main compo-
nent’s class declaration.

Upon casual examination, this code is deceptively simple. Keep in
mind, however, the many subproperties within the
SoundPlayEvents property we just discussed. If you enable many

Sound + Vision
events and then view all of the details, it could take up most of
the space in the Object Inspector (again, refer to Figure 2).

Next, we need to create constructors for these classes. That
chore is rather straightforward, so we’ll skip a detailed discussion
of it. One issue worth mentioning is that we need a way to
handle the options on our pop-up dialog box concerning defaults
(.WAV files or Yield). In the individual event classes, we handle
that situation with the following code, using data collected in
our expert:
16 January 2000 Delphi Informant Magazine

TSoundButton = class(TBitBtn)
private

FSoundPlayEvents : TSoundPlayEvents;
public

constructor Create(AOwner: TComponent); override;
procedure Click; override;

published
property SoundPlayEvents : TSoundPlayEvents

read FSoundPlayEvents write FSoundPlayEvents;
end;

Figure 4: A new component’s main class declaration.

procedure TSoundButton.Click;
var

fdwSoundValue : DWORD;
AhmodValue : HMODULE;
AFileName : array [0..255] of Char;

function GetfdwSoundValue(
ASoundPlayEvent: TSoundPlayEvent): DWORD;

begin
case ASoundPlayEvent.SoundSource of

ssFilename: Result := SND_FILENAME;
ssMemory: Result := SND_MEMORY;
ssAlias: Result := SND_ALIAS;
ssAliasID: Result := SND_ALIAS_ID;
ssResouce: Result := SND_RESOURCE;

end;
end; { GetfdwSoundValue }

begin
with SoundPlayEvents do begin

fdwSoundValue := GetfdwSoundValue(ClickSoundPlayEvent);
if (fdwSoundValue = SND_RESOURCE) then

AhmodValue := ClickSoundPlayEvent.hmodValue
else

AhmodValue := 0;
StrPCopy(AFileName, ClickSoundPlayEvent.SoundFile);
if ClickSoundPlayEvent.yield then

fdwSoundValue := (fdwSoundValue OR SND_NOSTOP);
case ClickSoundPlayEvent.ClickSoundPlayOption of

ckspPlayReturn:
PlaySound(AFileName, AhmodValue, fdwSoundValue or

snd_Async or snd_NoDefault);
ckspPlayNoReturn:

PlaySound(AFileName, AhmodValue, fdwSoundValue or
snd_Sync or snd_NoDefault);

ckspPlayNoSound: ;
ckspPlayContinuous:

PlaySound(AFileName, AhmodValue, fdwSoundValue or
snd_Async or snd_Loop or snd_NoDefault);

ckspEndSoundPlay:
PlaySound(nil, AhmodValue, fdwSoundValue or

snd_Async or snd_NoDefault);
end; { case }

end;
inherited Click;

end;

Figure 5: An event handler override to play a sound.
if SoundFactorsArray[j].WavFileDefault then
WriteALine(' FSoundFile := ''' +

SoundFactorsArray[j].DefaultWavFile + ''';')
else

WriteALine(' FSoundFile := ''*.wav'';');
WriteALine(' FSoundSource := ssFilename;');
if SoundFactorsArray[j].Yield then

WriteALine(' FYield := True;')
else

WriteALine(' FYield := False;');

Even more interesting to examine is the method that actually does
the work, in this case the Click method (see Figure 5).

There are various steps involved here. First, we use the local function,
GetfdwSoundValue, to determine the sound source type (SoundSource),
and return the corresponding flag. We then plug that flag into the last
parameter of the PlaySound function along with other appropriate
flags. Unless we use the SND_RESOURCE flag, the hmodValue is set
to zero. One option (that we don’t enable here) concerns default
sounds: snd_NoDefault is always set. Of course, we could add an addi-
tional subproperty. That will have to wait for the next version.

Conclusion
We haven’t investigated every detail of the code-generating engine.
However, the other procedures use similar approaches and these
same string arrays to accomplish their purpose. This version repre-
sents a major enhancement of the previous one. We’ve extended the
expert to handle other standard events besides the Click event.
Unfortunately, we haven’t provided a way to handle events that
might apply to just a few components, let alone new events we write
ourselves. This would be difficult to accomplish.

It would also be nice to have a property editor to use with our new
SoundsEvents property. Again, this would be tricky, because each
property will have its own character with a different list of subclass-
es, as well as a different list of properties within each subclass. Still,
there might be an appropriate and elegant means of doing this. I
plan to continue to update this expert, so be sure to let me know
what you’d like to see. In the meantime, enjoy using the many
sound-enabled components you’ll create using this tool. ∆

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in
INFORM\00\JAN\DI200001AM.

Alan Moore is a Professor of Music at Kentucky State University, specializing in music
composition and music theory. He has been developing education-related applica-
tions with the Borland languages for more than 10 years. He has published a num-
ber of articles in various technical journals. Using Delphi, he specializes in writing
custom components and implementing multimedia capabilities in applications, par-
ticularly sound and music. You can reach Alan on the Internet at acmdoc@aol.com.

Sound + Vision
Begin Listing One — WriteSoundClasses routine
procedure WriteSoundClasses;
var

j, NewClasses : Integer;
NewClassArray : array [0..EventMax] of string;

procedure WriteSoundPlayEventsClass;
var

i: Integer;
begin

WriteALine(' TSoundPlayEvents = class(TPersistent)');
WriteALine(' private');
for i := 0 to (NewClasses-1) do

WriteALine(' F' + NewClassArray[i] +
'SoundPlayEvent : T' + NewClassArray[i] +
'SoundPlayEvent;');

WriteALine('public');
WriteALine(' constructor Create(AOwner: TComponent);');
WriteALine(' published');
for i := 0 to (NewClasses-1) do begin

WriteALine(' property ' + NewClassArray[i] +
'SoundPlayEvent : T' + NewClassArray[i] +
'SoundPlayEvent read F' +
NewClassArray[i] + 'SoundPlayEvent');

WriteALine(' write F' + NewClassArray[i] +
'SoundPlayEvent;');

end;
WriteALine('end;');
WriteALine('');

end; { WriteSoundPlayEventsClass }

begin { WriteSoundClasses }
NewClasses := 0;
for j := 0 to EventMax do

if EventCheckBoxArray[j]= ecbsChecked then
begin

NewClassArray[NewClasses] := BasicEventNames[j];
inc(NewClasses);
WriteALine(' T' + BasicEventNames[j] +

'SoundPlayEvent = class(TSoundPlayEvent)');
WriteALine(' private');
WriteALine(' FSoundFile : TFileName;');
WriteALine(' FSoundSource : TSoundSource;');
WriteALine(' FYield : Boolean;');
WriteALine(' F' + BasicEventNames[j] +

'SoundPlayOption : T' +
BasicEventNames[j] +'SoundPlayOption;');

WriteALine(' public');
WriteALine(

' constructor Create(AOwner: TComponent);');
WriteALine(' published');
WriteALine(' property SoundFile: TFileName ' +

'read FSoundFile write FSoundFile;');
WriteALine(' property SoundSource: TSoundSource ' +

'read FSoundSource write FSoundSource ' +
'default ssFilename;');

WriteALine(' property Yield : Boolean ' +
'read FYield write FYield default False;');

WriteALine(' property ' + BasicEventNames[j] +
'SoundPlayOption : T' BasicEventNames[j] +
'SoundPlayOption read F' + BasicEventNames[j] +
'SoundPlayOption write F' + BasicEventNames[j] +
'SoundPlayOption;');

WriteALine('end;');
WriteALine('');

end;
WriteSoundPlayEventsClass;

end;

End Listing One
17 January 2000 Delphi Informant Magazine

18 January 2000 Delphi Informant Magazi

In Development
Control Panel Apps / DLLs / Configuration Programs / Delphi 2-5

By Peter J. Rosario

Figure 1: The Control Panel app
main dialog box.
Control Panel Applets
Integrating Configuration Programs with Windows

Control Panel applets are the small programs that are visible in, and run from,
Windows Control Panel. They are typically used to configure hardware, the operat-

ing system, utility programs, and application software. This article shows you how to cre-
ate and install your own Control Panel applet.
Why create your own custom Control Panel
applet? Many programs you develop require con-
figuration. You probably store the configuration
parameters in an .INI file, the registry, or a data-
base. Some programmers add code to their main
programs to allow users to display, change, and
save configuration parameters, perhaps making it
accessible through an Options menu choice.

However, there are many reasons why you should
consider placing this code in a separate Delphi
project. Placing the configuration code in a sepa-
rate Delphi project not only makes it more modu-
lar, and thus easier to debug, it also makes it more
amenable to parallel development within a team
of programmers. The separate Delphi project will
also exhibit high cohesion and low coupling.

By placing the configuration code in a separate
Delphi project, you can more easily prevent end-
user access to the code. You may want just an
administrator to be able to change the configura-
tion parameters. If this is the case, you could
install the compiled project on just the adminis-
trator’s machine or, if it is on a file server, you
could modify the file’s execute permission so that
only administrators can execute it.

Placing the configuration code in a separate
Delphi project allows you to convert it to a
Control Panel applet, making it appear more pro-

fessional and integrated with Windows.
Users and administrators are used to look-
ing in Control Panel when they want to
configure something. Why should it be any
different when it comes to your program?

A Control Panel applet is a special .DLL
that resides in the Windows system directo-

let’s
ne
ry. In this article, we’ll discuss implementing a
simple dialog box run from an .EXE, converting
the dialog box to a .DLL, and converting the
.DLL into a special .DLL with the file extension
.CPL. (All three projects are available for down-
load; see end of article for details.)

Simple Dialog Box Executable
The first Delphi project builds an executable and uses
only one unit/form: AlMnDlg.pas/AlMnDlg.dfm
(see Figure 1). The project uses an icon that is differ-
ent from the default Delphi torch-and-flame icon.
The form’s name is MainDlg, its BorderStyle property
is set to bsDialog, and it contains two buttons. Each
button’s ModalResult property is set to something
other than mrNone. When we’re done, this dialog
box will be what appears when you activate the
applet from the Control Panel.

Dynamic Link Library
The second Delphi project builds a .DLL and uses
the same form as the first project. It also adds a sec-
ond unit, AlMain.pas, that implements the Execute
procedure. The unit’s interface section contains the
Execute procedure’s header so it can be used outside
the unit. The procedure uses the stdcall calling con-
vention, because it will be exported from the .DLL.
Execute simply creates the dialog box, shows it
modally, and destroys it. Its definition is shown here:

procedure Execute; stdcall;
begin

AlMnDlg.MainDlg :=
AlMnDlg.TMainDlg.Create(nil);
try

AlMnDlg.MainDlg.ShowModal;
finally

AlMnDlg.MainDlg.Free;
AlMnDlg.MainDlg := nil;

end;
end;

In Development
It was easy enough to test the first Delphi project’s compiled exe-
cutable, Applet.exe. All we had to do was run it. To test the second
Delphi project’s compiled executable, Applet.DLL, we’ll have to
build a program whose sole purpose is to exercise the .DLL. This is
done in AlDriver.dpr. It contains a single form named MainDlg
that resides in ADMain.pas/ADMain.dfm, and has a single Execute

button (see Figure 2).

The button’s OnClick event handler calls the Execute procedure
exported by Applet.DLL:

procedure TMainDlg.ExecuteButtonClick(
Sender: System.TObject);

begin
ADMain.Execute;

end;

For the Applet DLL’s Execute procedure to be visible in the
ADMain unit, it must be imported from the .DLL. Once it’s
imported, it appears to the rest of the code to actually exist in the
unit at the location of the import statement. (This explains why
the fully qualified procedure name, ADMain.Execute, works.) The
procedure is statically imported using the external directive:

procedure Execute; external 'Applet.DLL';

Because no path is specified, Windows uses an algorithm to
search for the .DLL. One of the directories searched is the
Windows system directory. Another is the directory from which
the application loaded. In fact, that directory is searched first,
and is the preferred directory to use. The search algorithm is
documented in win32.hlp (on the Index tab, search on
“LoadLibrary”).

It’s simple to go into AlDriver.dpr’s Project | Options menu choice,
change to the Directories/Conditionals page, and type the directory
path to where Applet.DLL is located in the Output directory combo
box. If you do so in your driver project, it will automatically be
saved in the same directory as the .DLL whenever your driver exe-
cutable is built.

To test Applet.DLL, place AlDriver.exe into Applet.DLL’s direc-
tory if it’s not already there. Run AlDriver.exe and click the
Execute button. You should see the original dialog box on screen.
Because it’s shown modally, and both buttons have modal results
set to something other than mrNone, clicking either one of them
closes (and frees) the dialog box. When you’re done testing the
.DLL, close AlDriver.exe.

Congratulations! You now know how to place a form in a .DLL.
Only a few more steps are required to convert the .DLL into a
Control Panel applet.

Control Panel Applet
To test the second Delphi project, we had to build a driver pro-
gram to load the .DLL, import a subroutine, and execute the sub-
routine. To test the final Delphi project (the one that builds the
Control Panel applet), we won’t have to build a driver program.
Why? Windows itself will be the driver program. This controlling
application is usually Control Panel itself, or the Control Panel
folder in Windows Explorer. Like our driver program, the con-
trolling application will have to load the applet, import a subrou-
tine, and execute the subroutine.
19 January 2000 Delphi Informant Magazine
To load the Control Panel applet, the
controlling application must first find
it. The simplest way to allow the con-
trolling application to find the applet
is to copy it to the Windows system
directory. How does it distinguish
between Control Panel applet .DLLs
and regular .DLLs? Control Panel
applet .DLLs have the extension .CPL
— not .DLL. You can make your pro-
ject automatically use the .CPL extension instead of the .DLL
extension. To do so, select Project | Options. On the Application
page, type cpl in the Target file extension edit box.

To import a subroutine from a .DLL, the controlling application
must use the subroutine’s name or index. Windows uses the
name, and looks for a function named CPlApplet with the follow-
ing signature:

LONG APIENTRY CPlApplet(
HWND hwndCPl, // Handle to Control Panel window.
UINT uMsg, // Message.
LONG lParam1, // First message parameter.
LONG lParam2 // Second message parameter.

);

The code is shown in C because it’s from the Microsoft Help file
win32.hlp (refer to the “References” section at the end of this article
for more information). The Object Pascal equivalent is:

function CPlApplet(hwndCPl: Windows.THandle;
uMsg: Windows.DWORD; lParam1, lParam2: System.Longint):
System.Longint; stdcall;

This function header is declared in cpl.pas. If you have the
Professional or Client/Server versions of Delphi, you have access
to the source for the cpl.pas unit. You don’t need it to create
Control Panel applets, but it’s heavily commented, and therefore
provides good documentation.

Unlike our Execute procedure, the CPlApplet function is called many
times and performs multiple functions, depending on what parame-
ter values are passed. The table in Figure 3 shows the possible values
for the uMsg parameter. (The information found in this table comes
mostly from win32.hlp.)

Each CPL_XXX constant is defined in the CPL unit. The
example project’s CPlApplet function uses these constants (see
Figure 4).

As the description for CPL_GETCOUNT indicates, it’s
possible to implement multiple Control Panel applets (i.e.
dialog boxes) per .CPL. The example project, however, imple-
ments only one.

After you tell Windows how many dialog boxes your .CPL
implements, it calls the CPlApplet function again with uMsg
equal to CPL_INQUIRE once for each dialog box. The lParam1
parameter tells you which dialog box the function call is for. It
will be numbered from 0 to NumberOfDialogBoxes - 1. Because
the example project only implements one applet, the CPlApplet
function will only be called once so it doesn’t handle the cases
where lParam1 is other than 0.

Figure 2: The driver
executable’s main dia-
log box.

20 January 2000 Delphi Informant Magazine

Figure 3: Possible values for the CPlApplet parameter uMsg.

What When

CPL.CPL_INIT Called immediately after the .CPL
containing the applet is loaded.

CPL.CPL_GETCOUNT Called after the CPL_INIT function
call returns any non-zero value.

CPL.CPL_INQUIRE Called after the CPL_GETCOUNT
function call returns a count
greater than, or equal to, 1. The
CPlApplet function will be called
once for each dialog box, indicat-
ing which dialog box with its 0-
based index placed in lParam1.

CPL.CPL_DBLCLK Called after the user has chosen
the icon associated with a given
dialog box.

CPL.CPL_STOP Called once for each dialog box
before the controlling application
closes, indicating which dialog
box with its 0-based index placed
in lParam1.

CPL.CPL_EXIT Called after the last CPL_STOP
function call and immediately
before the controlling application
uses the FreeLibrary function to free
the .CPL containing the applet.

Why

The CPlApplet function should perform initialization pro-
cedures, e.g. memory allocation if necessary. If it can’t
complete the initialization, it should return zero, directing
the controlling application to terminate communication,
and release the .CPL. If it can complete the initialization,
it should return any non-zero value.
The CPlApplet function should return the number of dia-
log boxes it implements.
The CPlApplet function should provide information
about a specified dialog box. The lParam2 parameter
points to a CPLINFO record. The CPlApplet function uses
this record to tell the controlling application the applet’s
name, description, and icon.

The CPlApplet function should display the corresponding
dialog box, and carry out any user-specified tasks.

The CPlApplet function should free any resources associ-
ated with the given dialog box.

The CPlApplet function should free any remaining
resources, and prepare to close.

function CPlApplet(hwndCPl: Windows.THandle;
uMsg: Windows.DWORD; lParam1, lParam2: System.Longint):
System.Longint; stdcall;

const
NonZeroValue = 1;

begin
case uMsg of

CPL.CPL_INIT: Result := NonZeroValue;
CPL.CPL_GETCOUNT: Result := 1;
CPL.CPL_INQUIRE:

case lParam1 of
0:

begin
Result := NonZeroValue;
CPL.PCPLInfo(lParam2)^.idIcon := AlConst.IIcon;
CPL.PCPLInfo(lParam2)^.idName := AlConst.SName;
CPL.PCPLInfo(lParam2)^.idInfo := AlConst.SInfo;
Result := 0;

end;
else

end;
CPL.CPL_DBLCLK:

begin
Result := NonZeroValue;
AlMnDlg.MainDlg := AlMnDlg.TMainDlg.Create(nil);
try

AlMnDlg.MainDlg.ShowModal;
finally

AlMnDlg.MainDlg.Free;
AlMnDlg.MainDlg := nil;

end;
Result := 0;

end;
CPL.CPL_STOP: Result := 0;
CPL.CPL_EXIT: Result := 0;

end;
end;

Figure 4: An implementation of the applet’s exported func-
tion CPlApplet.

In Development
The CPLINFO record is defined in win32.hlp as:

typedef struct tagCPLINFO { // cpli
int idIcon;
int idName;
int idInfo;
LONG lData;

} CPLINFO;

and in cpl.pas as:

PCPLInfo = ^TCPLInfo;
tagCPLINFO = packed record

idIcon : System.Integer; // Icon resource id.
idName : System.Integer; // Name string res. id.
idInfo : System.Integer; // Info string res. id.
lData : System.Longint; // User defined data.

end;
CPLINFO = tagCPLINFO;
TCPLInfo = tagCPLINFO;

The controlling application allocates memory for this record, and pass-
es your CPlApplet function a pointer to it in the lParam2 parameter. All
your function has to do is dereference the pointer, fill in its fields, and
return zero. But what should the function fill the record with?

The controlling application needs three things from your applet
in order to display it inside the Control Panel properly: an icon,
a name, and a description. These three things must be resources
linked into your executable with unique identifiers. The record is
filled with the resource identifiers. How do you link resources
into and use them from your executable? There are five things
you must do:

In Development
1) find a suitable icon,
2) create a text resource file,
3) compile the text resource file into a binary resource file,
4) link the binary resource file into your executable, and
5) use the resources in your Object Pascal code.

The example project uses one of the icons that comes with Delphi, but
renames it to Applet.ico. The text resource file, Applet.rc, is shown here:

#include "AlConst.pas"

STRINGTABLE
{

SName, "Applet",
SInfo, "Test applet"

}

IIcon ICON ..\Applet.ico

There are two kinds of resources in this resource file: a string resource
(STRINGTABLE), and an icon (ICON) resource. Each string resource
has a pair of values: its identifier and its value. The value is shown in
double quotes. The identifier is a constant that represents an integer.
The constants are defined in the unit AlConst.pas (see Figure 5),
which is included within Applet.rc by using the #include directive.

The icon resource also has a pair of values: its identifier and the file
that contains the icon. The identifier comes from the AlConst unit,
just like the string resource identifiers. The file name shown
(..\Applet.ico) includes path information because Applet.ico isn’t in
the same directory as Applet.rc. Now, two of the five tasks required
to link in and use resources are finished: finding a suitable icon,
and creating a text resource file. What remains is to compile the
text resource file into a binary resource file, link the binary resource
file into the executable, and use the resources in Object Pascal code.

To compile the text resource file into a binary resource file, use
brcc32.exe. This command-line utility comes with Delphi and can
be found in the Delphi \Bin directory. Change to the directory that
contains Applet.rc and use the following command:

brcc32.exe Applet.rc

This creates an output file in the same directory, and with the same
name as the input file Applet.rc, but with the extension .RES.
Applet.RES is the binary resource file. You can inspect the file by
opening it with the Delphi Image Editor (from the Tools menu).

Linking the binary resource file into the executable is a simple mat-
ter of adding a compiler directive to Applet.dpr:

{$R ..\Applet.RES}
21 January 2000 Delphi Informant Magazine

unit AlConst;

interface

const
SName = 1;
SInfo = 2;
IIcon = 3;

implementation

end.

Figure 5: The AlConst.pas file.
In the sample project, the Applet.RES file generated from Applet.rc
is in the directory immediately above Applet.dpr, hence the ..\ path
information in front of the file name. It’s a good thing, too,
because Delphi automatically generates another Applet.res file in
the same directory as the .dpr. This explains the directive you
always see in Delphi project files:

{$R *.RES}

The asterisk here means “the same file name as the .dpr,” not
“any file name.”

Now that the binary resource file will be linked into your executable
the next time it’s recompiled, how do you go about using the
resources in Object Pascal? All you have to do now is include the
AlConst unit in the uses clause of the unit that needs access to the
resource identifiers. In the example project, this is the AlMain unit.

The only other uMsg parameter values that need explanation are
CPL_STOP and CPL_EXIT. Because the sample project allocates and
deallocates needed memory from within the CPL_DLBCLK case
statement block, the CPL_STOP and CPL_EXIT case statements
don’t have to do anything except indicate success by returning 0.

Conclusion
Windows’ open architecture, and Delphi’s combination of ease and
power, allow you to locate configuration code in custom Control Panel
applets. Using custom Control Panel applets makes your applications
look more professional, polished, and integrated with Windows.

References
The win32.hlp file is part of Microsoft’s Windows software develop-
ment kit. It comes with Delphi, and if you accepted the default
locations when you installed Delphi, it can be located at either
C:\Program Files\Common Files\Borland Shared\MSHelp if you
have Delphi 4 or 5, or at C:\Program Files\Borland\Delphi 3\HELP
if you have Delphi 3. Open the file, make sure the Contents tab is
selected, and scroll down until you see Control Panel Applications.

The CPL unit found in cpl.pas is a port of cpl.h. It comes with
Delphi, and if you accepted the default locations when you
installed Delphi, it can be found at either C:\Program
Files\Borland\Delphi5\Source\Rtl\Win\cpl.pas if you have Delphi 5
(substitute 4 for 5 if you’re using Delphi 4), or at C:\Program
Files\Borland\Delphi 3\Source\Rtl\Win\cpl.pas if you have Delphi 3.
Another reference from Inprise can be found at http://www.borland.
com/devsupport/delphi/faq/FAQ1043D.html, although it seems to be
old code (Delphi 2), because it isn’t aware of the CPL unit added in
Delphi 3. A reference from Microsoft can be found at http://support.
microsoft.com/support/kb/articles/q149/6/48.asp. ∆

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in
INFORM\00\JAN\DI200001PR.

Peter J. Rosario is a consultant with System Innovations Group (http://www.sysinnov.
com) based in the metropolitan Washington, D.C. area. He and his lovely wife Shelley
have three boys named Caleb, Nathan, and Matthew. You can contact him at
PRosario@sysinnov.com with comments or questions or if he and his company can
provide you with a Delphi, Microsoft SQL Server, or Web-based solution.

http://www.borland.com/devsupport/delphi/faq/FAQ1043D.html
http://www.borland.com/devsupport/delphi/faq/FAQ1043D.html
http://support.microsoft.com/support/kb/articles/q149/6/48.asp
http://support.microsoft.com/support/kb/articles/q149/6/48.asp
http://www.sysinnov.com
http://www.sysinnov.com

22 January 2000 Delphi Informant Magaz

Dynamic Delphi
ActiveX / Delphi 3-5

By Ron Loewy
Run-time ActiveX
Embedding ActiveX Controls at Run Time

T he release of Delphi 3 introduced the ability to use ActiveX controls in Delphi appli-
cations. A developer who wants to use an ActiveX control imports it into the Delphi

development environment using the Component | Import ActiveX Control menu option in Delphi
4/5. The Delphi import utility creates a Pascal wrapper around the ActiveX control, and
adds it to the Delphi component library.
The developer can then drag the control onto a
Delphi form and use it in the application. So, it
appears that Delphi supports everything one could
want to do with an ActiveX control. However, a
closer inspection shows that a Delphi application
can use an ActiveX control only if it’s known to
Delphi at compile time. This is different from
other forms of COM objects, such as Automation
objects that can be used by Delphi with the
CreateOleObject procedure in the ComObj.pas sys-
tem unit. The truth is that an ActiveX control can
be instantiated like an Automation object and used
in code, but the most important part of the
ActiveX control, the visual representation of the
functionality it encapsulates, cannot be used. In
this article, I’ll introduce a relatively simple method
to use “unknown” ActiveX controls at run time.

Why Bother?
The December, 1999 issue of Delphi Informant
contains an article I wrote about an application
extension framework via COM interfaces. The
article discusses the subjects of creating an applica-
tion object model, creating a framework for
COM-based plug-ins, and integrating the COM
plug-ins with the application’s menu structure.
The plug-ins described in this article perform logic
functions by accessing the application’s object
model. If the plug-in needs to collect information
from the user, it displays a modal dialog box that
is separate from the forms of the application.

Consider the idea of an application extension
framework that needs to include embedded views
that are part of the plug-ins created by the appli-
cation users or third-party vendors: If you want to
take advantage of the COM benefits, you need a
method to embed these views into your applica-
tion. A natural fit for COM-based embedded
“views” is ActiveX controls.
ine
Let’s consider an application that allows the user
to manage and edit rich media. Assume a database
of rich media elements at a newspaper where
media items (pictures, videos, audio clips, etc.) are
indexed for easy retrieval by the reporters and
researchers that work for the publication. In this
article, a researcher might enter a set of keywords
and get a collection of hits, a set of articles related
to the media element. The researcher then needs
to click the different hits, and view/listen to them
to determine if they meet his or her needs.

Assume that we wrote this application as a standard
Delphi application. We support standard Windows
.bmp files. We also wrote the support for other
popular file formats, such as .eps, .gif, .jpeg, and
.avi files. Unfortunately, if we want to support new
formats, such as .mgeg video, RealAudio, or .png
images, we’d need to recompile the application and
distribute it to our users. And we’d need to perform
the same task every time a new media format needs
to be added. In addition to the hassle of recompil-
ing and distributing, we’d also have to contend
with increasing application source code size, the
need to maintain all the code when a new version
of the compiler arrives, and the possibility of intro-
ducing bugs when making these changes.

An alternative solution is to define a standard way
to register media types with the system, and store
the metadata about the media element with the
media element. When the element needs to be
viewed, an ActiveX control will be embedded with-
in the application and will display the element.
When a new media type needs to be added, a new
ActiveX control will be written to display this
media type, and the ActiveX control will be regis-
tered with the system. With this solution, the code
pieces for every element are separate from the rest
of the system. Every project is smaller in scope, and

Dynamic Delphi
is therefore easier to write and maintain. Different developers can write
the different modules without the need to retain similar coding styles,
make changes in code written by other people, or cause unintentional
harm to code. If we sell our news media indexer application to other
users, the users can add support to new media types, or other elements
specific to their organization without access to our code. (Consider a
publication that uses an internally developed XML DTD to store
information about news items, and wants to display this information
using a graphical, hierarchical view specific to their needs.)

ActiveX Control = Automation Object + Visual Stuff
Before we start investigating the ins and outs of the visual parts of an
ActiveX control, it’s a good idea to quickly review the COM object’s
pecking order. Every COM object is an object that implements the
IUnknown interface. This interface provides the ability to retrieve
other interfaces supported by the object (via the QueryInterface
method), and the object’s lifetime handling via reference counting.

An Automation object is an object that implements the IDispatch
interface. This interface allows non-compiled languages, such as
VBScript, JScript, and VBA, to access the object’s properties and
methods by packing parameters into standard memory structures
that are passed to the object. A Delphi-created Automation object
also supports a type library, a binary representation (metadata) of
the object’s properties and methods.

To keep it simple: An ActiveX control is an Automation object that
implements a set of interfaces that allow an ActiveX host application
to embed the control visually into one of its windows. The control
will display itself within the area the application provides for the
control, and will control the focus and mouse within this area.

An ActiveX Control in Delphi Clothes
Our quest to understand ActiveX controls, and learn how to embed
one at run time in an application, starts by inspecting the code gen-
erated by Delphi when an ActiveX control is imported. For the pur-
poses of this article, I imported the Microsoft Internet Explorer
(WebBrowserOC) control and inspected the code created by Delphi
in the ShDocVw_TLB.pas file that Delphi placed in the \Imports
sub-directory of the Delphi installation directory. Every ActiveX
control you import and inspect will be fine for the purpose of
understanding what makes an ActiveX control useable by Delphi.

Looking for the definition of TWebBrowser in the generated file, we
realize that the class descends from the TOleControl class. The Delphi 3
and 4 Help files describe TOleControl as follows: “TOleControl is
derived from TWinControl and handles the interactions with OLE
necessary for using OCX controls in the Delphi environment. It is
unlikely that you will ever need to derive a component from this class.”

This description is accurate; the code Delphi generates when it imports
an ActiveX control creates a VCL wrapper around the control (derived
from TWinControl), and allows your Delphi application to interact with
the correct OLE embedding interfaces. We must, however, disagree
with the claim that it’s unlikely that we’ll derive a component from this
class, as we’ll do just that to create our run-time embedding code.

If we continue to inspect the code generated by Delphi for the
TWebBrowser class, we can see that it contains two main parts: code
specific to the interface implemented by the specific ActiveX control,
and maintenance code not defined for this interface. I specifically
chose the Microsoft IE control, because the main interface of the con-
trol, IWebBrowser2, is well documented in the Microsoft INetSDK,
23 January 2000 Delphi Informant Magazine
and it was easy to separate the control-specific functionality (methods
such as GoBack, GoHome, and Navigate in this specific control) from
code generated by Delphi to manage the OLE interaction.

Usually, when we inspect the code of a specific control we imported,
we would only be interested in the code specific to this control and
its functionality, and we are happy that Delphi automatically creates
all the boring maintenance code for us. Not so in this case; the
interesting code, for our purposes, is the code that creates and man-
ages the communication with the OLE interfaces.

In the protected section of the generated code, we see the functions
CreateControl and InitControlData, which should be inspected. We
should also note the ControlInterface property, defined in the public
part of the class definition. These functions include the secret to the
way a Delphi ActiveX wrapper interacts with the OLE interfaces.

Inspecting the code further reveals that CreateControl returns the
control-specific interface from an internal field named OleObject.
InitControlData initializes a ControlData structure and returns a pointer
to it. One of the interesting values defined in the control data structure
is the class ID of the ActiveX control. This leads us to investigate the
code for TOleControl to better understand what’s happening.

TOleControl is defined in the file OleCtrls.pas, which is installed in
the \Source\VCL directory of the standard Delphi installation. If we
inspect this file, we find that TOleControl is a TWinControl descen-
dant that implements the following interfaces:

IUnknown — it is, after all, a COM object.
IDispatch — and an Automation object.
IOleClientSite, IOleControlSite, IOleInPlaceSite, etc. — the inter-
faces required to host an ActiveX control.

What we can learn from this is that the TOleControl descendant is
an ActiveX host (or Site in OLE speak) that talks to the ActiveX
control and tells it where it can display itself. Looking further into
the code, we can see that OleObject (mentioned previously) is an
IOleObject interface reference.

Let’s now inspect the Create constructor of a TOleControl class. Like
every other TComponent descendant, it receives an Owner component,
but looking at the code reveals that it also calls the InitControlData
method, which we’ve noticed in the generated TWebBrowser code.
The internal CreateInstance method of TOleControl is later called from
the constructor, and this function uses some of the fields of control
data structure filled by InitControlData to instantiate the control inter-
face and set the OleObject interface by using the COM library’s
CoCreateInstance function.

By now, it’s clear that a TOleControl-derived class starts a specific
ActiveX control by filling the control data with the specific informa-
tion of this ActiveX control. It provides access to the control-specific
functionality (after it was created) via the CreateInterface property.

One would assume that the Delphi IDE knows how to fill the con-
trol data memory structure when it creates the control’s wrapper
code by reading the control’s type library and setting all the infor-
mation as required. In theory, we could implement the code that
reads and parses a type library, and reproduce this functionality at
run time to create a run-time embeddable control host. My needs
for run-time embedding of ActiveX controls are actually rather sim-
ple, so instead of going to the trouble of implementing this code, I
chose to take a simpler approach.

Dynamic Delphi

Figure 1: The application displaying a bitmap media item via
the RTBMP.Viewer ActiveX control.
Different Class IDs, Same Control
I decided that I wanted all the controls to be treated as if they were
the same control. They would all have the same functionality as far
as my applications were concerned. The only difference between
them would be the implementation details, which aren’t of any
interest to the application.

Therefore, I decided to create a TOleControl descendant that will
have the same ControlInterface (the same functionality as far as the
application is concerned), and will only differ in the ClassID
between the different ActiveX controls that will be embedded by
the component. This doesn’t make the class I will discuss here a
true Jack-of-all-trades class that can host any ActiveX control, but a
more limited control host that can load at run time all the ActiveX
controls that implement a specific interface.

If you remember our sample application, the media indexing appli-
cation we discussed previously, you can see that every media browser
object needs to support the same functions: receive a pointer to the
media element data, and display this data. For most applications
that want a run-time ActiveX hosting facility, a common interface
can be easily found. Obviously, a development tool, such as Delphi,
that needs to be able to host every kind of ActiveX regardless of
interfaces that it supports, will need to be able to read and parse the
control’s type library, but our application is much simpler.

Defining the Control’s Functionality Interface
To use the embedded control from the application, we need to
define the interface that the control must implement. This is really
an application-specific task, but some guidelines can be useful:

Assuming that the application is an Automation server, and pro-
vides an object model that can be used by external applications,
scripts, or plug-ins, it makes sense to provide the entry point to
the application’s object model to the control. Thus, I like to
have a SetApplication(MyAppRef: ImyApplication) method in the
interface that needs to be implemented by the control.
In most cases, there’s a reason to pass data between the applica-
tion and the control. The way this is done is specific to your
application, but it’s usually initiated with the GetInformation
and SetInformation methods.
Because the application activates and deactivates the control based
on something the user does in the user interface, it’s usually a good
idea to have the Activate and Deactivate methods in the interface.
Basically, you can think of the control’s life cycle as follows:
1) The user performs an operation that requires the activation

of control X.
2) The application creates the control using the GUID and

embeds it in its window.
3) The application uses the SetApplication method of the inter-

face to tell the control how it can call it (the application) back.
4) The application uses the SetInformation method to transfer some

information to the control so it will be able to initialize itself.
5) The application calls the control’s Activate method. The con-

trol now needs to activate its user interface and be ready to
accept user input.

6) The user works with the control until it’s done with the
object that required the use of the control, and does some-
thing that requires the removal of the control (maybe choos-
ing another object, or choosing a close function).

7) The application calls the control’s Deactivate method.
8) The application calls the control’s GetInformation to get

information that the user edited in the control (if editing is
part of the control’s functionality).
24 January 2000 Delphi Informant Magazine
In addition to these functions, which are usually part of a control
interface, every application will define more methods that need to be
implemented by embedded controls. It usually makes sense to pro-
vide methods in the application’s object model that facilitate some of
the back-and-forth communication carried between the control and
the application. For example, assume that the control reads informa-
tion from a stream managed by the application; the application’s
object model will need to provide methods that allow the control to
perform operations, such as ReadInteger, ReadString, etc.

The Sample Application
The sample application will be a simple form of the media search
application we just discussed. We’ll create an application that allows
the user to create folders of hierarchical media information. For
every media item — a media item will be brought from a standard
file (I didn’t want to implement a database to store the data for this
sample) — the user can provide different attributes, keywords, and
other pieces of information.

Our application will provide the visual tree that will allow the
user to choose different media items. It will also allow the user to
add new items and to save/load a collection of these items. We
won’t provide any built-in functionality to edit/view any of the
media items in the application; instead, the application will
define an architecture that will allow us to add media types at
run time and implement a viewer/editor for them as ActiveX
controls. Figure 1 shows our application displaying a bitmap
item using the RTBMP.Viewer ActiveX control.

Designing the Item Data Structure
The application stores the project’s information in the Objects array
of the treeview nodes. The root node and folders have no object
associated with them. Nodes that represent a media item have a
TMediaItem object associated with them.

Our application saves the information about a project in one file.
Therefore, it needs to have a way to read and store all the informa-
tion about the media items, even when it doesn’t know what kind of
information a specific media item allows to edit/store about itself.

The TMediaItem goals are as follows:
Store the information about the media file.
Store media item attributes (keywords, notes, etc.).
Store and load the item attributes.
Search for hits on a specific keyword.

Dynamic Delphi

TMediaItem = class(TComponent)
private

// Pointer to the media file.
FMediaFile : string;
// The item "editable" attributes.
FMediaAttr : TMemoryStream;
// The keywords associated with the item.
FKeywords : TStringList;

protected
function GetAutomationObject: IDispatch; virtual;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
procedure WriteToStream(AStream: TStream);
procedure ReadFromStream(AStream: TStream);
function MatchKeyword(AKeyword: string): Boolean;
property MediaFile: string

read FMediaFile write FMediaFile;
property MediaAttr: TMemoryStream read FMediaAttr;
property Keywords: TStringList read FKeywords;
property AutomationObject: IDispatch

read GetAutomationObject;
end;

Figure 2: The TMediaItem class definition.

TRuntimeActiveXHost = class(TOleControl)
protected

FIntf: IRTViewObject;
FClassID: TGUID;
CControlData: TControlData;
procedure InitControlData; override;
procedure InitControlInterface(const Obj: IUnknown);

override;
public

constructor CreatePlugin(AOwner: TComponent;
AParent: TWinControl; AClassID: TGUID);

procedure Activate;
procedure Deactivate;
procedure SetEditedObject(EditedObj: IRTViewMediaItem);
property ControlInterface: IRTViewObject read FIntf;

end;

Figure 3: The class definition for TRuntimeActiveXHost.
The design of the class is rather simple: It stores a string field that
points to the media item file, stores a string list that holds the key-
words associated with the media item, and holds a memory stream
that includes all the attribute information. The class definition is
shown in Figure 2.

Let’s discuss the public section methods and properties briefly:
Create is a constructor that creates the internal keywords string
list and media attributes memory stream.
Destroy cleans after the object.
WriteToStream writes the item’s information to a stream; used by
the save function of the application.
ReadFromStream reads the item’s information from a stream;
used by the load function of the application.
MatchKeyword determines if the item matches a specified key-
word; used by the application’s search function.
MediaFile is the name of the media file associated with the item.
Keywords is the list of search words associated with the item.
MediaAttr is a stream of item-specific attributes managed by the
ActiveX editor for the media file type.
AutomationObject is the Automation object that represents the
item in communications between the editor/viewer ActiveX and
the application.

The Application Object Model
The application exposes its functionality to the ActiveX viewer/edi-
tor via an object model. For the purpose of this sample, only two
Automation objects are defined. The first, named Application, is
simply the wrapper around the application and exposes the Selected
property that points to the selected media item. The other is the
RTViewMediaItem Automation object that is a wrapper around a
TMediaItem instance, which we discussed previously.
In addition to access to the media item’s MediaFile and Keywords
properties, the Automation object provides a set of methods to
read/write information from/to the MediaAttr stream. These
include methods such as the read/write functions
ReadIntFromStream and WriteStrToStream, and maintenance func-
tions, such as ClearStream, ResetStream, and StreamSize.

When the user clicks on a node in the tree that represents a media
item, the ActiveX control that is the viewer/editor of this item will
get a reference to RTViewMediaItem that represents this item.
25 January 2000 Delphi Informant Magazine
The ActiveX Viewer/Editor Common Interface
The application will host ActiveX media item viewers/editors that
share a common interface. Every ActiveX control that will be cre-
ated to view/edit a media type needs to implement this interface.
We define this interface as IRTViewObject in the application’s
type library. Its definition follows:

IRTViewObject = interface(IDispatch)
['{ 9EE4FE00-2A1A-11D3-A5EA-0040053BA735 }']
procedure ActivateEditor; safecall;
procedure DeactivateEditor; safecall;
procedure SetEditedObject(const AnObj: IRTViewMediaItem);

safecall;
function Get_TypesCount: Integer; safecall;
function Get_TypeItem(i: Integer): WideString; safecall;
function Get_ViewerGuid: WideString; safecall;
property TypesCount: Integer read Get_TypesCount;
property TypeItem[i: Integer]: WideString

read Get_TypeItem;
property ViewerGuid: WideString read Get_ViewerGuid;

end;

Again, let’s discuss some of the procedures and properties:
SetEditedObject is called by the application after the ActiveX
control has been created for a specific media item. A reference
to the media item RTViewMediaItem object (discussed in the
previous section) is passed.
ActivateEditor is called when the viewer is displayed. It’s used to
read the media file information, display it, and retrieve the key-
words information and other attributes associated with the item.
DeactivateEditor is called when the viewer is discarded, and is
used to store the information edited by the user (keywords,
additional attributes) back with the application.
Additionally, the properties TypesCount, TypeItem, and
ViewerGuid are used when registering the ActiveX with the sys-
tem. (We will discuss viewer registration later.)

Creating a Run-time Control Host
So far, we’ve figured out that ActiveX control hosts in Delphi
descend from TOleControl, and that during the time Delphi imports
a control, it parses its type library and builds the knowledge about
the control interface into code. We, on the other hand, decided that
we will pre-define the control’s functionality by defining an interface
that the control will have to implement.

Now is the time to implement our run-time ActiveX control
host. The rtAXHost.pas unit, available for download with the
rest of this article’s code, implements the TRuntimeActiveXHost
class, a descendant of TOleControl. The definition of the class is
shown in Figure 3.

Dynamic Delphi
The CreatePlugin constructor is used to instantiate the control. It
receives a parent TWinControl to display itself on, and a GUID for
the ActiveX class. The control then creates the ActiveX control and
displays it in the area of the parent control.

The InitControlData method is used to set the ActiveX type library
information. It initializes the CControlData structure that defines
the number of events, the class ID, and other ActiveX options. The
Activate, Deactivate, and SetEditedObject methods are wrappers
around the calls to the ActiveX control’s methods that are part of the
IRTViewObject we discussed previously.

For most projects where you need to embed ActiveX controls, you
can use RTAXHost.pas as your skeleton, and replace the interface-
specific methods for your application. The application uses the
TRuntimeActiveXHost control when the user clicks on a node in the
tree that represents a media item.

The TreeView’s OnChange event is defined as follows:

procedure TRTViewer.ItemsViewerChange(Sender: TObject;
Node: TTreeNode);

begin
FreeCurrentViewer;
SwitchToNode(Node);

end;

First, we release the currently active viewer (if one exists), which
then switches to the new node. Switching to a new node uses the
following code fragment in the case of a media item:

FCurrentItem := TMediaItem(ANode.Data);
CreateActiveXHost;
if (Assigned(RTHost)) then

RTHost.Activate;

where RTHost is an instance of TRuntimeActiveXHost, which was cre-
ated by calling the CreatePlugin constructor from CreateActiveXHost.
In the next section, we’ll discuss ActiveX control registration with the
application and show how the creation is accomplished. Notice that
after the control host has been created, its Activate method is called
(which in turn calls the actual ActiveX’s Activate method).

ActiveX Control Registration and Activation
The application needs to know which ActiveX control to activate for
a specific media type. The application keeps an internal string list
that contains lists of names and values in the format, as follows:

TYPENAME=GUID

TYPENAME is the extension of the file’s media type (for example,
BMP for bitmaps, HTML for html, etc.). The GUID is a string
representation of the class ID of the ActiveX control that imple-
ments the viewer for this media type.

When the CreateActiveXHost method is called to create the viewer,
the media item’s file extension determines the media type, and the
internal list is used to get the GUID of the ActiveX. This GUID
is passed to the CreatePlugin method of the ActiveX control host,
and the viewer is created.

The internal list is read from the registry upon application start-
up, but the values have to be added to this list somehow. We can’t
26 January 2000 Delphi Informant Magazine
expect users to type 40-character-long GUID numbers to associ-
ate them with specific media types, but we can expect them to
type the control name.

Registration of new ActiveX viewers is done using the application’s
Options | Add ActiveX menu item. The user is asked for the ActiveX
name (e.g. RTBMP.Viewer, which we’ll discuss later).

The application then starts the ActiveX as if it was a simple
Automation object (using CreateOleObject), and uses the properties
TypesCount, TypeItem, and ViewerGuid, which the ActiveX needs to
implement. An ActiveX viewer can register itself with the system for
more than just one media type; the RTBMP.Viewer ActiveX control
supports .bmp and .wmf files, for example.

Application Roundup
Believe it or not, this is all we need to do to host ActiveX controls at
run time in the application. We will now continue to discuss a sam-
ple viewer ActiveX that can display graphic files (.bmp, .wmf), and
edit keywords and notes associated with this file.

Writing a Bitmap Viewer ActiveX Control
We’re now ready to start the real fun: writing ActiveX controls that
can be registered with the application and provide viewers/attribute
editors for the different media types. The sample we’ll introduce is a
.bmp and .wmf file viewer.

We start by creating a new ActiveX library. I named this library
RTBMP. Next, we need to create an ActiveX control in this library.
The easiest way to create such a control in Delphi is to use the File |

New | ActiveForm wizard.

I gave the name Viewer to the ActiveForm (the class name is
TViewer) and saved the ActiveForm file under the name
BMPVIEW.pas (and BMPVIEW.dfm).

To create an ActiveX that can be used by our application, we must
add the application’s typelib unit (RTVIEW_TLB.PAS) to the uses
clause of the ActiveForm unit, and add the IRTViewObject interface
to the list of interfaces supported by the ActiveForm unit. The defi-
nition of the TViewer class now reads:

TViewer = class(TActiveForm, IViewer, IRTViewObject)

We must also add the interface methods to the class definition as
follows:

procedure ActivateEditor; safecall;
procedure DeactivateEditor; safecall;
procedure SetEditedObject(const AnObj: IRTViewMediaItem);

safecall;
function Get_TypesCount: Integer; safecall;
function Get_TypeItem(i: Integer): WideString; safecall;
function Get_ViewerGuid: WideString; safecall;

Before we continue to inspect the implementation, let’s discuss the
graphical UI that will be used for the control. We will use a TImage
control to display the media file. The top of the window will have a
tabbed interface with one tab that includes a keyword list and but-
tons to add/remove keywords, and the other tab will include a
memo where the user can write notes about the picture.

In addition to these, we’ll have a checkbox at the bottom of the con-
trol that, when clicked, stretches the image to the size of the avail-

Dynamic Delphi
able space and, when unchecked, will display the image in its origi-
nal size. We’ll also define the property EditedObject of
IRTViewMediaItem type that will be tracked by the control to pro-
vide access to the application’s media item.

Let’s start looking at the code for the control registration. The
Get_ViewerGuid method returns the GUID created by Delphi for
our class in the typelib unit file. (In RTBMP_TLB.pas, we copy the
value of Class_Viewer and return it in our method):

function TViewer.Get_ViewerGuid;
begin

Result := '{ 01B4C0E3-2A36-11D3-A5EA-0040053BA735 }';
end;

We now continue to the task of defining the types that will be asso-
ciated with the viewer. Delphi’s TImage supports .bmp and .wmf
files, so we’ll register ourselves with these two types. Get_TypesCount
defines the number of types our viewer supports, and Get_TypeItem
returns the different types:

function TViewer.Get_TypesCount;
begin

Result := 2; // BMP and WMF are supported.
end;

function TViewer.Get_TypeItem;
begin

case i of
0 : Result := 'BMP';
1 : Result := 'WMF';

end;
end;

Let’s discuss the other functions. SetEditedObject sets the internal
EditedObject property to the IRTViewMediaItem, which is passed to
us from the application:

procedure TViewer.SetEditedObject;
begin

FEditedObject := AnObj;
end;

ActivateEditor is called when the viewer is activated. We access the
EditedObject to get the name of the media file and display it in the
27 January 2000 Delphi Informant Magazine

Figure 4: The application displaying an HTML page using the
RTHTML.Viewer ActiveX control.
TImage control, read the keywords information from the control,
and, if the attribute stream associated with the item is not empty, we
read the note and the value of the stretch checkbox using the stream
functions that the application exposes to us:

procedure TViewer.ActivateEditor;
var

FileName : string;
begin

FileName := EditedObject.MediaFileName;
Image1.Picture.LoadFromFile(FileName);

KeywordList.Items.Text := EditedObject.Keywords;
if (EditedObject.StreamSize > 0) then begin

EditedObject.ResetStream;
Memo1.Lines.Text := EditedObject.ReadStrFromStream;
StretchBox.Checked := EditedObject.ReadBoolFromStream;
StretchBoxClick(Self);

end;
end;

Finally, DeactivateEditor saves the note, keywords, and value of the
stretch checkbox to the memory stream in the application:

procedure TViewer.DeactivateEditor;
begin

EditedObject.Keywords := KeywordList.Items.Text;
EditedObject.ClearStream;
EditedObject.WriteStrToStream(Memo1.Lines.Text);
EditedObject.WriteBoolToStream(StretchBox.Checked);

end;

The rest of the code in the control deals with the trivial issues of
managing and editing the keywords.

It’s remarkable: Every media item viewer that we’ll implement will be as
simple to create as this because of the simple architecture we created.

Using the Application
To use the application, you need to perform the following steps:
1) Compile the project RTView.dpr.
2) Compile the ActiveX project RTBMP.dpr, and use the Run | Register

ActiveX Server option to register the control with the system.
3) Start the application, and use the Add Folder button to create

a folder.
4) Use the Add Item button and add a *.bmp file (you should have

some in Delphi’s images subdirectory or in the Windows directory).
5) Click on the new Bitmap node, and notice that nothing is displayed.
6) Register the .bmp viewer with the application. First, click on the

root node in the tree. Select the Options | Add ActiveX menu
option and enter the ActiveX name RTBMP.Viewer
(ProjectName.ClassName). Click OK.

7) Choose the media file item in the tree again. You should now be
able to see the file and the keyword/notes editor in the pane to
the right of the image.

Although not discussed in this article, the sample code includes the
source of another media view project, named RTHTML.Viewer,
which can be compiled, registered with the application, and used to
view *.html and *.htm files using the MSIE WebBrowser control.
Figure 4 shows the RTHTML.Viewer.

Conclusion
ActiveX controls can be embedded in Delphi applications at run time
with surprisingly little work. Combining the techniques described in
this article, and the plug-in article from the December, 1999 issue,

Dynamic Delphi
allows us to take another step into the design of extendable applications
that can be updated and enhanced without recompilation.

The use of an extension framework based on COM and ActiveX makes
our product extendable by every development tool that supports these
Windows technologies. Delphi, Visual Basic, Visual C++, and others can
all be used to create plug-ins and visual extensions to the application. ∆

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in
INFORM\00\JAN\DI200001RL.

Ron Loewy is a software developer for HyperAct, Inc. He is the lead developer of
eAuthor Help, HyperAct’s HTML Help authoring tool. For more information about
HyperAct and eAuthor Help, contact HyperAct at (515) 987-2910, or visit
http://www.hyperact.com.
28 January 2000 Delphi Informant Magazine

http://www.hyperact.com

29 January 2000 Delphi Informant Magaz

New & Used

By Alan C. Moore, Ph.D.
Orpheus 3
An Award-winning Product Gets Better

T he first component library I bought when I began using Delphi in 1995 was
TurboPower’s Orpheus. I immediately became a fan. The second version of Orpheus

came out in 1996 with support for Delphi 2, as well as a number of important enhance-
ments. Orpheus 3 has finally arrived, and it was definitely worth the wait.
A Strong Data Entry Foundation
While Orpheus was the first major component
library for Delphi, it was by no means the first
product created by TurboPower. When Delphi
appeared, TurboPower was well established as a
leader among Borland third-party tool producers.
The roots of Orpheus include DOS tools and the
Data-Entry Workshop for Turbo Pascal for
Windows. Data entry remains at the center of this
library, and is one of its great strengths.

Even before it was fashionable, TurboPower
included validated entry capabilities in its libraries,
including its DOS libraries. Orpheus supports
both hard and soft validation. It includes two
abstract base classes, TOvcBaseEntryField and
TOvcBasePictureField, which provide the basis for
the other classes. The basic derivatives are the
components, TOvcSimpleField, TOvcPictureField,
and TOvcNumericField. There’s also a
TOvcEFColors class. Of course, the components
have data-aware versions: TOvcDbSimpleField,
TOvcDbPictureField, and TOvcDbNumericField.
Orpheus also includes a supporting cast of rou-
tines and special field types to handle a variety of
programming situations. If you need fields that are
required, read-only, or uninitialized, you’ve cov-
ered. If you’re concerned about international
issues, you’ll be pleased with Orpheus’ support. Its
EntryFields work closely with Windows’ interna-
tional settings and its display strings, maintained
in a single resource file, can easily be edited for
various languages. If your application requires cus-
tom validation, the excellent documentation shows
you how to accomplish this with a clear example.

Closely related to the single entry field components
are those used in the Orpheus tables. I must admit
that when I first used Orpheus, it took a while to
get used to the complexity of its tables, i.e. having
to use several field components along with a table
component. However, the learning curve was not
ine
all that steep, and once I became proficient I was
impressed with the level of control. The power that
this approach gives you is immense: You can define
the characteristics of individual rows and columns,
as well as the characteristics of individual cells.

Orpheus tables are supported by various classes that
give you a great deal of control, such as
TOvcTableColors, TOvcGridPenSet, TOvcTableRows,
and TOvcTableColumns. These last two classes have
powerful editors that allow you to set many proper-
ties. Of course, there are a plethora of field compo-
nents, including: TOvcTCBitmap, TOvcTCGlyph,
TOvcTCIcon, TOvcTCCheckBox, TOvcTCString,
TOvcTCMemo, TOvcTCColHead, and
TOvcTCRowHead. These are based on custom com-
ponents from which you can derive your own spe-
cialized field components.

In addition to data entry and table components,
Orpheus also provides enhancements to standard
components. As we’ll discover, these enhance-
ments have been expanded greatly in version 3.

Buttons, Labels, List Boxes, and
Power Combo Boxes
Similar to Delphi’s BitBtn, Orpheus’
AttachedButton can be physically “attached” to
another Windows control so that it moves when the
other control is moved. Its functionality will usually
be related to the control to which it is attached,
such as a “browse button” attached to an edit field
in which a filename is entered. Spinners — which
provide a mouse interface for changing an entry
field’s value — can be viewed as specialized types of
buttons. While their values are generally numeric,
they can be used to cycle through a series of any
valid values, such as Yes, No or Male, Female.
Available in various styles, they can be “docked” to
an associated entry field. They can also repeat their
cycling when a spinner button is held down.

New & Used
A new control, the Button Header, is actually a hybrid that com-
bines the capabilities of Delphi’s THeader and TSpeedButton con-
trols. An obvious use would be to place the Button Header at the
top of a column and then perform some action on that column
(such as sorting) when the button is clicked. Also new, a URL label
allows you to add a Web-like interface to your applications.

An Orpheus veteran, the Virtual ListBox, can handle a nearly
unlimited number of entries. How? It’s designed so that it doesn’t
store anything on its own. Instead, you must provide data when it
needs to paint itself. It supports advanced features such as up to 128
tab settings, horizontal scrolling, and the ability to display rows of
data in any combination of colors.

A Data-Aware Column ListBox provides the functionality of a list
box with data-awareness. It displays the values of a specific field in a
database with each row representing a different record in the data-
base table. Among other new controls is the Checklist Box, a
scrolling list of check boxes, each of which can be in any of three
states: checked, unchecked, or disabled (grayed). Such Checklist
Boxes are useful in installation programs or similar applications
where several items must be chosen at a given time.

The History Combo Box works a lot like the standard VCL
TComboBox but includes a history capability in which the most
recently used items are copied to the top of the list for easy access.
Other combo boxes we’ll be examining shortly have the ability to
display a selection history.

Specialized combo boxes, referred to as “Power Combo Boxes,” are a
welcome addition to Orpheus 3. These Power Combo Boxes provide
the functionality of standard Windows combo boxes but with special-
ized data pre-loaded, history lists, and auto-search capability. The latter
feature allows the user to incrementally search for a specific item in the
list: as the user types, the list of items is narrowed to just those items
that match the typed input. Some of these combo boxes are appropri-
ate for any Delphi application, while others are geared especially to
database programming. Of the latter group, some can optionally be fil-
tered to include only specific fields from the underlying data source.

No general library would be complete without a means of selecting
files and directories. Directory and File Combo Boxes are two of
Orpheus’ Power Combo Boxes. You can use them together or separate-
ly to provide a means for users to navigate lists of available directories
and/or files on a disk drive. The File Association Combo Box contains
the list of registered file types found in the Win32 registry, allowing
users to choose the application with which to open a given data file.
The Font Combo Box comes with a list of fonts installed on the cur-
rent machine; text can even be displayed using the actual font. Symbols
next to each font name indicate whether it’s a TrueType or printer font.

The Database Alias Combo Box contains a list of the aliases defined
by the Borland Database Engine. Whenever you select an alias with
this control, it can automatically update the value of the Database
Table Combo Box to reflect the selection. A Database Alias Dialog
offers the same functionality as the Database Alias Combo Box, but
exposes it in an easy to use dialog box. The Data-Aware Field
Combo Box displays a list of database fields in a combo box format
with optional history lists and auto-search capabilities. An Index
Selector control displays a combo box that is pre-loaded with the
names of the available indices in the underlying dataset. You can
program it to substitute designated text in place of the actual index
names in the combo box list.
30 January 2000 Delphi Informant Magazine
Finally, the Data-Aware Table Name Combo Box displays a list of
tables from an underlying database in a combo box format, with
optional history lists and auto-search capabilities. You can synchronize
this control with the new Data-Aware Alias Combo Box to automati-
cally update this control’s contents whenever the active alias is changed.

Calendars, Clocks, and Time Calculation
Earlier versions of Orpheus included date/time picture fields, calendars,
and strong support for working with dates and times. These capabili-
ties have been expanded considerably in the new version, especially
with the addition of the new clock components. The Calendar and
Data.Aware Calendar components provide a month-at-a-glance display
with support for navigating months, years, or going to specific dates.

An important addition, the Clock controls (standard and data-aware)
display a real-time analog clock with a customizable clock-face display.
Of course, you can create and use additional clock faces if you wish.
Clock controls can be used to display the actual time or elapsed time
(stopwatch mode), making them useful in a variety of situations.

The new Date Edit Entry and Data-Aware Date Edit Entry Fields
accept date entries in a variety of formats, including English text
(“today,” “tomorrow,” and “next week”) or a variety of numeric for-
mats. They can convert these formats to a standardized date display
and even include a drop-down calendar for interactive date selec-
tion. The Data-Aware Date Edit and Data-Aware Time Edit work
like the corresponding standard controls but add the ability to tie
the display and edit capabilities to a database field.

A Plethora of Data-aware Controls
Virtually every control that should have a data-aware version, does have
a data-aware version. We’ve already seen several. There are also some
rather unexpected ones with useful features. For example, the Data-
Aware Display Label control works just like the Rotated Label control,
but includes the ability to connect to the DisplayName of a database
field while the Data-Aware Picture Label Control displays a field’s value.
Using these two controls together, you can gather and display data from
a database without knowing all of its characteristics beforehand. Since
both controls descend from the Rotated Label control, either can work
with any TrueType font or can be rotated to any angle.

Editing large blocks of text is sometimes needed in a database appli-
cation. Orpheus’ Data-Aware Text Editor works like the standard
Editor control but includes the ability to connect to a specific field
in a database table. The Data-Aware Memo Dialog provides an easy
way to display and edit the contents of a Memo Field in a database
table with just a single line of code.

Orpheus 3 includes three Data-Aware Array Editors. They are simi-
lar in look and feel to the data-aware list boxes, but include the abil-
ity to edit their data. Each one corresponds to one of the three com-
mon types of data in Orpheus edit controls: numeric data, simple
string data, and string data based on a picture mask.

The Data-Aware Entry Fields work just like the standard Entry
Fields, but with the added capability of getting and saving their
data to the fields of an underlying data source. Orpheus’ Entry
Fields allow for fully validated, highly customizable data entry.
Again, these Entry Field controls correspond to the numeric, sim-
ple string, and picture string data types.

The Data-Aware ReportView is a data-aware version of the new
ReportView control discussed later. Orpheus includes three

New & Used
ReportViews: the standard edition, the Data edition, and this Data-
Aware edition. Of course, there is a Data-Aware Table (Grid), as
complex, flexible, and powerful as the TOvcTable, but with the abil-
ity to edit data from an underlying data source.

Other User-interface Controls
Some user-interface controls help us organize the desktop. Orpheus’
popular Notebook provides a tabbed interface to multiple pages, each
of which can serve as parent to any other control. You can set the draw-
ing style for a Notebook’s tabs or even display those tabs on any edge of
the Notebook. An unusual feature is the Notebook’s ConserveResources
property, which can effectively postpone the construction of a
Notebook’s individual pages and controls until they are needed.

Notebooks are one means of organizing a desktop; splitters provide
a means of creating multi-paned windows and are a common
Windows convention. With the enhanced Splitter control, you can
arrange multiple Splitter controls inside themselves, creating as
many “panes” as you need.

Among the important user interface controls in Orpheus are the editors
and the viewers. The TOvcEditor control is identical to Delphi’s TEdit,
with the addition of the capability to have an attached label and to pro-
vide access to an Orpheus Controller for its descendants. Of course,
there is a data-aware version, TOvcDbEditor, which adds the capability
of connecting to a data source and editing the text of a memo field. The
File Viewer and Text File View controls can display large amounts of
data in a browsable display. The standard File Viewer can display files of
any kind (such as binary files), while the Text File Viewer can display
text files stored in disk files.

We often want to return to an application and have it “remember”
the state in which we left it. Orpheus 3’s State Controls can be used
to save the characteristics of forms and the controls placed on them
between program runs.

Miscellaneous Controls and New Stars
While meters are not new in Orpheus 3, they are enhanced consider-
ably with new visual effects possible through the use of bitmaps. The
new Peak Meter shows a graphical representation of the current value of
an application-defined measurement and the highest value during the
current session. Another important addition, the MRU control, auto-
matically handles a list of the most recently used documents, on either
the File menu or elsewhere in your application. The use of this control
31 January 2000 Delphi Informant Magazine

Figure 1: An example Orpheus program demonstrating the
new LookOut Bars.
isn’t limited to filenames, either.
Developers can use it to manage
any list of strings. Other miscel-
laneous components include a
customizable Calculator control,
a Calculator Dialog, and a
Calendar Dialog. One of the
least glamorous of these controls
might rank among the most use-
ful: the Timer Pool can manage
multiple timer events using just
one Windows Timer resource.
Now let’s look at the new stars.

A major concern for many
Delphi developers is having the
ability to incorporate the look
and feel of Microsoft applications
in their own applications —
without having to build the new
controls from scratch. I recently
saw a query on an Internet dis-
cussion list looking for a compo-
nent that emulated the left pane
of Microsoft Outlook, a particu-
larly popular application. Some
time ago Orpheus users made the
same request of TurboPower, and
the company delivered.

Among the stars of Orpheus 3 are the new LookOut Bars (see
Figure 1) and the ReportViews (see Figure 2), which provide just
this functionality. The LookOut Bars consist of zero or more slid-
ing folders. Each of these folders can contain icons representing
different program operations. Users can easily navigate to the dif-
ferent folders by clicking on a folder’s group tile. They can also
click icons to select specific operations within a folder.

The TOvcLookOutBar component includes properties and methods
that give you a great deal of power and flexibility. For example, the
InsertFolder and RemoveFolder methods allow you to add or remove

Orpheus is an outstanding library of data-entry,
user-interface, and general-purpose Delphi com-
ponents. At the core of the library are powerful
data-entry components, with simple, picture,
and numeric entry-field components. The cadre
of table components provide the basis for build-
ing powerful and flexible grids. With over 100
classes and components, including everything
from specialized timers to flexible notebooks,
enhanced basic components to leading edge
controls, this is truly a comprehensive library.
Example programs, full source code, extensive
online help, and superb newsgroups provide all
the help you could possibly need.

TurboPower Software Company
P.O. Box 49009
Colorado Springs, CO 80949-9009

Phone: Within the US, (800) 333-4160;
outside the US, (719) 260-9136
Fax: (719) 260-7151
E-Mail: info@turbopower.com
Web Site: http://www.turbopower.com
Price: List price, US$279; upgrades from
Orpheus 1.x or Essentials Vol. 1, US$119;
upgrades from Orpheus 2.x, US$139; upgrades
from any other TurboPower product, US$223.
Figure 2: An example Orpheus program showcasing one of the
new ReportView components.

New & Used
folders at run time. Similarly, the InsertItem and RemoveItem meth-
ods allow you to add or remove items to and from folders at run
time. You can also rename folders or items as well as take advantage
of a number of other useful capabilities.

The other significant new component, TOvcReportView, implements
a sophisticated columnar list box that allows you to sort and group
the columns in a variety of ways. Again, an increasing number of
popular applications include this kind of functionality, i.e. to display
multiple views of the data in the columns. If the data shown were a
list of files, you could sort that data by filename, size, or date just by
clicking on the header tile. You also have the ability to sort in
ascending or descending order; to create groups or groups within
groups; and to customize the visual appearance of the control.

There are other ReportView components. TOvcDbReportView is a data-
aware version of the TOvcReportView component. As with other data-
aware controls, it allows you to connect to the fields of a database. The
third ReportView component, TOvcDataReportView, has the same visu-
al appearance and many of the same properties of the TOvcReportView
component, but implements the Items property. This largely eliminates
the data management chores you need to handle in the lower-level
TOvcReportView component. On the other hand, you don’t have quite
the same control over data formatting and sorting that you do with the
lower-level control. This illustrates one of the major strengths of this
library, and indeed all of the TurboPower libraries: Orpheus makes few
assumptions about how you might need to use a particular control or
class of controls; rather it gives you many choices and options.

Documentation and Support
Although I haven’t mentioned every component and class, I have tried
to provide a good idea of the richness of this library and some of its
major strengths. Documentation and support are usually important
considerations in shopping for software. The massive expansion in
components in Orpheus has led to an equally impressive expansion in
its documentation. The excellent manual, now in two volumes com-
prising over 1,000 pages, describes each component, its uses, proper-
ties, methods, and events. It also provides excellent background infor-
mation on many related topics. As with previous versions, Orpheus 3
includes full source code and many example programs. To provide easy
and rapid support, TurboPower offers an online newsgroup, where you
can generally get questions answered within 24 hours.

Conclusion
If someone were to ask me what third-party library they should buy
if they could buy only one, I would recommend Orpheus. I don’t
know of any other library that is so rich with useful and powerful
components. The documentation and the level of support are unsur-
passed. But if you have doubts, download the trial version and find
out for yourself. I don’t think you’ll be disappointed. ∆

Alan Moore is a Professor of Music at Kentucky State University, specializing in music
composition and music theory. He has been developing education-related applica-
tions with the Borland languages for more than 10 years. He has published a num-
ber of articles in various technical journals. Using Delphi, he specializes in writing
custom components and implementing multimedia capabilities in applications, par-
ticularly sound and music. You can reach Alan on the Internet at acmdoc@aol.com.
32 January 2000 Delphi Informant Magazine

File | New
Directions / Commentary
The Case for Delphi

Just when you thought you could relax and enjoy programming with the best Windows development tool, the unthink-
able has happened. Your boss, who possesses about five percent of your programming knowledge, is raising ques-

tions about the continued use of Delphi.
In the past year, I saw two threads on two different Internet lists dealing
with this very scenario. One such thread began like this: “I have recently
started developing with Delphi and now our IT department is question-
ing our choice of Delphi instead of the more mainstream Microsoft
products. They are concerned that by using Delphi we will not be able
to integrate into new technologies like Office 2000, etc. unless we are
using Visual Basic/VBA. I have tried to convey to them that everything
that can be done in VB/VBA can also be done in Delphi faster with
better end results. What they are looking for are reasons why Delphi is
indeed better. If I can’t provide a solid list of reasons, I may be forced to
switch to Visual Basic, at which point I would just as soon use C++,
because the learning curve is not that much greater than the mess in
VB. It amazes me to have to write hundreds of lines of VB code to do
something that could be done [with] drag and drop in Delphi.”

Immediately jumping into the discussion, I pointed out that with this
last statement, the gentleman had already begun to develop his ratio-
nale for continuing to use Delphi. The many answers that followed
over the next week or so provided a wealth of additional arguments.
It also helped me better understand some of the important differ-
ences between Delphi and VB. I must confess that I’ve never tried
VB. I did try Basic for a few months in the early 1980s, but once I
tried TurboPascal 2 I knew I had found the answer to all of my pro-
gramming needs. I never looked back. Let’s examine some of the pro-
Delphi arguments that developers contributed to this thread.

Practical advice. One contributor suggested this very practical and
powerful approach: “Ask them just what they think Delphi can’t do,
and show them they’re wrong! Borland’s Web site does a good job of
pushing the various capabilities Delphi has, including dealing with
each of MS’s new fads.” But, how can you really get that point across?
A developer who programs in both Delphi and Visual Basic made this
practical suggestion: “My advice to you would be to let a VB pro-
grammer in your IT department have an honest go at trying Delphi
for a couple of weeks and let him or her provide you and your man-
agement with their opinion. That is what I did when Delphi 1 came
out — I tried it, I liked it, and I have been working on it ever since.”

If your manager thinks of himself or herself as a “hands-on engi-
neer” and would prefer to see both tools in action, you might try
this approach: “Just make two programs, one in VB and one in
Delphi. Program an intentional error in both, and look what hap-
pens. The Delphi app will stay after the error message appears. The
VB app will disappear after the ‘Run time error number XXXX’
message.” Now, exactly how do we define RAD?

Some would argue that there’s no better way to demonstrate the
power of a programming language than by showcasing applica-
tions written with the language. One individual provided some
examples of programs he’d written in Delphi. These included: 1)
a program to remap and unmap network drives in Windows
while eliminating their letters; 2) a template extender for the
33 January 2000 Delphi Informant Magazine
Windows New command; 3) an anti-virus program for a network
that can be automatically updated with every login; and 4) a
replacement for Netscape’s setup program that lets you enter all
your configuration information, such as e-mail, homepage, and
bookmark locations as part of the setup. I’m tempted to devote
an entire column just to a survey of some of the great applica-
tions written with Delphi.

Some one-liners. If you’re looking for a quick list of Delphi’s
strengths, here are some of the one-liners I encountered in these
messages. Some deal with Delphi’s underlying language, Object
Pascal; some deal with Delphi’s ability to work at a low level; others
deal with the kinds of applications you can produce in Delphi; some
relate to Delphi’s component capabilities; and some of them high-
light Delphi’s powerful database and Web application capabilities.
With minimal editing, I present them in the order encountered:

Many of the functions packaged with Delphi are only available
as expensive add-ons in VB.
Delphi provides much easier hardware access than VB.
Delphi provides easier access to the Windows API than VB, i.e. you
need not declare functions from the Windows API, just use them.
Unlike VB, Delphi gives you the ability to use assembly lan-
guage right in your Object Pascal code.
Delphi creates very small executables that can do some powerful
Windows “tweaking.”
Delphi creates true stand-alone applications.
While Delphi gives you the ability to create DLLs and call them
from an application, you aren’t forced to redistribute a DLL
(VBRun*.dll) with your application.
Since VB components are OCX-based, you must install these
OCXes with your application; Delphi components are fully
linked into the final executable.
Enterprise-level communication/object-brokering technology
servers are easier to build in Delphi.
Delphi provides the ability to create powerful components; you
can’t create components in VB unless you use an outside compil-
er such as Visual C++.
There’s no inheritance in VB as there is in Delphi.
A database app written in Delphi is considerably faster than a
database app written in VB.
Native database drivers for Sybase ASE and MS SQL Server come
with Delphi/BDE; this makes database access with SQL servers
faster than having to go through ODBC as you must with VB.
With Delphi, you can easily create or modify objects to include
business rules and customization.
With some Delphi versions you get the VCL source code.
Delphi is based on Object Pascal, a true OO language; while VB
may use objects, it can hardly be considered an OO language.
Debugging support in Delphi is far superior to that of VB, help-
ing greatly to accelerate the development cycle.
Delphi is more robust, providing better error handling.
With Delphi, you can use pointers in your code if you need to.

File I New
Delphi is built with Delphi; VB is built with C++. This in itself
should tell you a lot about the VB language and its limitations.
Real-time statistical systems (and other real-time data-processing sys-
tems) are extremely sluggish in VB compared to their Delphi/C++
equivalents (a quote attributed to a very good VB programmer).
You can’t write IIS Web server applications in VB as you can
with Delphi.

Arguments from the experts. Different arguments will work with dif-
ferent managers. Some managers will be moved by pure logical argu-
ments; others by emotion and threats (“If you take away my favorite
language, I’ll leave, gosh darn it!”); still others by the words of estab-
lished experts, particularly one who has switched from VB to Delphi. If
you’ve been a regular Delphi Informant Magazine reader, you’ll recall a
comparison of VB to Delphi by Bruce McKinney in the April, 1998
issue. As I recall, it was very thorough, fair, and balanced. If you’d like to
find out in more detail why this recognized VB guru and author of
Hardcore Visual Basic [Microsoft Press, 1997] decided to leave his
“favorite language,” surf on over to http://www.devx.com/upload/free/
features/vbpj/1999/mckinney/mckinney1.asp. He spares none of the
gory details. In the process, you’ll find a plethora of strong, well-
reasoned arguments for sticking with Delphi.

However, McKinney is hardly the only respected writer in the field
who is a strong advocate for Delphi. The individual who contributed
the URL above to the discussion also provided two quotes from Bill
Machrone, which appeared in PC Week: “Of the 12 major large-scale
projects being developed by my company, four are Delphi, six are VB,
one is C++, and one is a complete Internet project. Of the 12 projects,
only the Delphi projects are on budget, on schedule, are meeting the
performance requirements, and have the highest customer satisfaction.”
(Bill Machrone, PC Week, March 31, 1997.) This sounds almost like a
Borland advertisement for Delphi. And yet, it’s an independent assess-
ment by a respected writer. Here’s another one: “I think it’s the finest
visual development environment available today. It’s easy enough for a
neophyte to produce simple, robust applications, and deep enough for
an expert to create exciting, highly customized programs. The resulting
code is faster and smaller than Visual Basic’s. Delphi’s Language Pack
makes it the choice product for developing internationalized products.”
(Bill Machrone, PC Week, March 10, 1997.)

In addition to the Web site I just mentioned, there is another one that
includes a link to McKinney’s article and many others in a Web article
entitled “Delphi vs. Others” at http://delphi.miningco.com/library/
weekly/aa042799.htm. Most of the articles are comprehensive com-
parisons of various RAD environments, such as Delphi, Visual
Basic, and PowerBuilder.

Conclusion. As with many threads, this one eventually expanded to
related topics. One had to do with why we might face such a prob-
lem at all, and raised the issue of Borland/Inprise’s marketing of
Delphi. One individual put it in very strong terms: “Wake up Inprise
... You have the best tools under your eyes! I love Delphi, and I’d
never give it up in all my life. This means that I want to see it survive
well into the future. Get yourselves some new radical advertisers and
shamelessly promote your wonderful [tools]. With proper marketing,
Delphi can once again become one of Inprise’s most powerful and
versatile languages used by a majority of the IT industry.”

Many of us would certainly qualify as Delphi zealots. If we’re honest,
we must admit that there’s a place for VB and other development
languages. Another contributor to the thread summed it up better
than I could hope to with the following words: “Not a language
34 January 2000 Delphi Informant Magazine
point, but an argument point would be that an excellent VB pro-
grammer may or may not know something about the OS, the API,
memory management, and the hardware architecture of the PC and
how to interact with it. An excellent Delphi programmer will likely
know a good bit about all of these. The fact is, with Delphi, there’s
always an option, always a way to get it done. With VB, sometimes
there’s no way to do what you want to do.”

Until next time, enjoy working with Delphi, the most powerful
Windows development tool ever! ∆

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at Kentucky State University, special-
izing in music composition and music theory. He has been developing
education-related applications with the Borland languages for more than
10 years. He has published a number of articles in various technical
journals. Using Delphi, he specializes in writing custom components and
implementing multimedia capabilities in applications, particularly sound
and music. You can reach Alan on the Internet at acmdoc@aol.com.

http://www.devx.com/upload/free/features/vbpj/1999/mckinney/mckinney1.asp
http://www.devx.com/upload/free/features/vbpj/1999/mckinney/mckinney1.asp
http://delphi.miningco.com/library/weekly/aa042799.htm
http://delphi.miningco.com/library/weekly/aa042799.htm

	Table of Contents
	Delphi Tools
	Excel Software Announces QuickCRC 1.2
	Vista Software Releases Apollo Client/Server 5.0
	Tiriss Announces CB4 Tables Version 1.01
	Vista Software Launches Apollo 5.0
	ASTA Technology Group Announces ASTA 2.0
	Quiksoft Announces EasyMail Objects Version 5.0
	Greg Lief Offers G.L.A.D. Components
	Wise Introduces Wise for Windows Installer
	SSNet Releases NeoSecure

	Delphi News
	Inprise Announces JBuilder 3 Enterprise Solaris Edition
	Inprise to Support C, C++, and Delphi Development on Linux
	Inprise Centralizes European Customer Support Operation
	Inprise Licenses VisiBroker CORBA Technology to HP

	Delphi at Work
	Divide and Conquer
	Under the Hood
	Safety First
	Polly Want a Cracker?
	Conclusion

	Distributed Delphi
	One-to-one Connections
	Threads
	Communication
	Spawning Request Threads
	Making Requests
	Processing Requests
	Asynchronous
	Improvements
	Conclusion

	Sound + Vision
	Programming the Expert Engine
	Conclusion
	Begin Listing One — WriteSoundClasses routine

	In Development
	Simple Dialog Box Executable
	Dynamic Link Library
	Control Panel Applet
	Conclusion
	References

	Dynamic Delphi
	Why Bother?
	ActiveX Control = Automation Object + Visual Stuff
	An ActiveX Control in Delphi Clothes
	Different Class IDs, Same Control
	Defining the Control’s Functionality Interface
	The Sample Application
	Designing the Item Data Structure
	The Application Object Model
	The ActiveX Viewer/Editor Common Interface
	Creating a Run-time Control Host
	ActiveX Control Registration and Activation
	Application Roundup
	Writing a Bitmap Viewer ActiveX Control
	Using the Application
	Conclusion

	New & Used
	Buttons, Labels, List Boxes, and Power Combo Boxes
	Calendars, Clocks, and Time Calculation
	A Plethora of Data-aware Controls
	Other User-interface Controls
	Miscellaneous Controls and New Stars
	Documentation and Support
	Conclusion

	File I New

